Theoretical analysis and wind tunnel tests were carried out to study wind-induced intemal pressure response for the structure with single windward opening and background leakage. Its goveming differential equation was...Theoretical analysis and wind tunnel tests were carried out to study wind-induced intemal pressure response for the structure with single windward opening and background leakage. Its goveming differential equation was derived by the Bemoulli equation in an unsteady-isentropic form. Numerical examples were provided to study the additive damping caused by background leakage in laminar and turbulent flow, and the influence of background leakage on fluctuating internal pressure response was quantized. A series of models for low-rise building with various opening ratios and background leakage were designed and wind tunnel tests were conducted. It is shown that the fluctuating intemal pressure reduces when the background leakage are considered and that the effect of background leakage can be predicted accurately by the governing differential equation deduced in this paper.展开更多
基金Project (No. 50578144) supported by the National Natural ScienceFoundation of China
文摘Theoretical analysis and wind tunnel tests were carried out to study wind-induced intemal pressure response for the structure with single windward opening and background leakage. Its goveming differential equation was derived by the Bemoulli equation in an unsteady-isentropic form. Numerical examples were provided to study the additive damping caused by background leakage in laminar and turbulent flow, and the influence of background leakage on fluctuating internal pressure response was quantized. A series of models for low-rise building with various opening ratios and background leakage were designed and wind tunnel tests were conducted. It is shown that the fluctuating intemal pressure reduces when the background leakage are considered and that the effect of background leakage can be predicted accurately by the governing differential equation deduced in this paper.