Ultra-Dense Network (UDN) is considered to be the key enabler for realizing capacity goals set by 5G. The major concern in UDN deployment is the backhaul network, which should be scalable, cost-effective, and have s...Ultra-Dense Network (UDN) is considered to be the key enabler for realizing capacity goals set by 5G. The major concern in UDN deployment is the backhaul network, which should be scalable, cost-effective, and have sufficient capacity to support massive small cell traffic. Otherwise, the backhaul can become the bottleneck of the network. In this paper, we propose a wireless backhaul solution for UDN deployment by considering MultiPath-MultiHop (MPMH) backhaul architecture in mmWave frequency band. In addition, we propose a distributed routing scheme to forward the backhaul traffic over the multihop network. Backhaul capacity and line-of-sight probability of the proposed backhaul architecture for various picocell densities were compared with direct, multiple-association, and multihop backhaul schemes under interference limited scenarios in outdoor and indoor small cell deployments. The simulation results indicate that the MPMH mmWave backhaul is the most cost-effective and scalable solution for UDN deployment.展开更多
基金This work was supported in part by the National Science Foundation for Distinguished Young Scholars of China with Grant number 61325004 as well as the National Science Foundation of China with Grants 61771216 and 61601191.
文摘Ultra-Dense Network (UDN) is considered to be the key enabler for realizing capacity goals set by 5G. The major concern in UDN deployment is the backhaul network, which should be scalable, cost-effective, and have sufficient capacity to support massive small cell traffic. Otherwise, the backhaul can become the bottleneck of the network. In this paper, we propose a wireless backhaul solution for UDN deployment by considering MultiPath-MultiHop (MPMH) backhaul architecture in mmWave frequency band. In addition, we propose a distributed routing scheme to forward the backhaul traffic over the multihop network. Backhaul capacity and line-of-sight probability of the proposed backhaul architecture for various picocell densities were compared with direct, multiple-association, and multihop backhaul schemes under interference limited scenarios in outdoor and indoor small cell deployments. The simulation results indicate that the MPMH mmWave backhaul is the most cost-effective and scalable solution for UDN deployment.