Satellite microwave instruments have different field of views(FOVs)in different channels.A direct average technique(“direct method”)is frequently used to generate gridded datasets in the earth science community.A la...Satellite microwave instruments have different field of views(FOVs)in different channels.A direct average technique(“direct method”)is frequently used to generate gridded datasets in the earth science community.A large FOV will measure radiance from outside the area of a designated grid cell.Thus,the direct method will lead to errors in a measurement over a grid cell because some pixels covering areas outside of the cell are involved in the averaging process.The Backus−Gilbert method(BG method)is proposed and demonstrated to minimize those uncertainties.Three sampling resolutions(6.5 km×6.0 km,11.5 km×6.0 km,13.0 km×6.0 km)are analyzed based on the scanning characteristics of the Global Precipitation Measurement(GPM)Microwave Imager(GMI)18.9-GHz channel.Brightness temperatures(TBs)at 0.5 km×0.5 km resolution over eastern China are used to obtain synthetic 18.9-GHz TBs at the three sampling resolutions.The direct and BG methods are both applied to create a 25 km×25 km gridded dataset and their related uncertainties are analyzed.Results indicate the error variances with the direct method are 3.00,3.68 and 4.99 K2 at the three sampling resolutions,respectively.By contrast,the BG method leads to a much smaller error variance than the direct method,especially over areas with a large TB gradient.Two GMI orbital measurements are applied to verify the BG method for gridding process is reliable.The BG method could be utilized for general purpose of creating a gridded dataset.展开更多
Magnetic films with low Gilbert damping are crucial for magnonic devices,which provide a promising platform forrealizing ultralow-energy devices.In this study,low Gilbert damping and coercive field were observed in Bi...Magnetic films with low Gilbert damping are crucial for magnonic devices,which provide a promising platform forrealizing ultralow-energy devices.In this study,low Gilbert damping and coercive field were observed in Bi/In-dopedyttrium iron garnet(BiIn:YIG)thin films.The BiIn:YIG(444)films were deposited onto different substrates using pulsedlaser deposition.Low coercivity(<1 Oe)with saturation magnetization of 125.09 emu/cc was achieved along the in-planedirection of BiIn:YIG film.The values of Gilbert damping and inhomogeneous broadening of ferromagnetic resonance inBiIn:YIG films were obtained to be as low as 4.05×10^(-4)and 5.62 Oe,respectively.In addition to low damping,the giantFaraday rotation angles(up to 2.9×10^(4)deg/cm)were also observed in the BiIn:YIG film.By modifying the magneticstructure and coupling effect between Bi^(3+)and Fe^(3+)of Bi:YIG,doped In^(3+)plays a key role on variation of the magneticproperties.The low damping and giant Faraday effect made the BiIn:YIG film an appealing candidate for magnonic andmagneto-optical devices.展开更多
基金This study was supported by the National Key R&D Program of China(Grant Nos.2018YFC1507200 and 2017YFC1501402)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant No.2019QZKK0104)+1 种基金an NSFC Project(Grant Nos.91837310,41675041,and 41620104009)the Key Research and Development Projects in Anhui Province(Grant No.201904a07020099),and CLIMATE-TPE(ID 32070)under the framework of the ESA-MOST Dragon 4 program.
文摘Satellite microwave instruments have different field of views(FOVs)in different channels.A direct average technique(“direct method”)is frequently used to generate gridded datasets in the earth science community.A large FOV will measure radiance from outside the area of a designated grid cell.Thus,the direct method will lead to errors in a measurement over a grid cell because some pixels covering areas outside of the cell are involved in the averaging process.The Backus−Gilbert method(BG method)is proposed and demonstrated to minimize those uncertainties.Three sampling resolutions(6.5 km×6.0 km,11.5 km×6.0 km,13.0 km×6.0 km)are analyzed based on the scanning characteristics of the Global Precipitation Measurement(GPM)Microwave Imager(GMI)18.9-GHz channel.Brightness temperatures(TBs)at 0.5 km×0.5 km resolution over eastern China are used to obtain synthetic 18.9-GHz TBs at the three sampling resolutions.The direct and BG methods are both applied to create a 25 km×25 km gridded dataset and their related uncertainties are analyzed.Results indicate the error variances with the direct method are 3.00,3.68 and 4.99 K2 at the three sampling resolutions,respectively.By contrast,the BG method leads to a much smaller error variance than the direct method,especially over areas with a large TB gradient.Two GMI orbital measurements are applied to verify the BG method for gridding process is reliable.The BG method could be utilized for general purpose of creating a gridded dataset.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFE0201000)the National Science Fund for Distinguished Young Scholars(Grant No.52225201)+2 种基金the National Natural Science Foundation of China(Grant Nos.52372004 and 52072085)the Fundamental Research Funds for the Central Universities(Grant Nos.2023FRFK06001 and HIT.BRET.2022001)Heilongjiang Touyan Innovation Team Program.
文摘Magnetic films with low Gilbert damping are crucial for magnonic devices,which provide a promising platform forrealizing ultralow-energy devices.In this study,low Gilbert damping and coercive field were observed in Bi/In-dopedyttrium iron garnet(BiIn:YIG)thin films.The BiIn:YIG(444)films were deposited onto different substrates using pulsedlaser deposition.Low coercivity(<1 Oe)with saturation magnetization of 125.09 emu/cc was achieved along the in-planedirection of BiIn:YIG film.The values of Gilbert damping and inhomogeneous broadening of ferromagnetic resonance inBiIn:YIG films were obtained to be as low as 4.05×10^(-4)and 5.62 Oe,respectively.In addition to low damping,the giantFaraday rotation angles(up to 2.9×10^(4)deg/cm)were also observed in the BiIn:YIG film.By modifying the magneticstructure and coupling effect between Bi^(3+)and Fe^(3+)of Bi:YIG,doped In^(3+)plays a key role on variation of the magneticproperties.The low damping and giant Faraday effect made the BiIn:YIG film an appealing candidate for magnonic andmagneto-optical devices.