Disinfection is an important step in ensuring that water is safe to drink. Well disinfection is used to inactivate or control bacteria populations in a well and the distribution system. Disinfection is the inactivatio...Disinfection is an important step in ensuring that water is safe to drink. Well disinfection is used to inactivate or control bacteria populations in a well and the distribution system. Disinfection is the inactivation or destruction of pathogenic organisms through the disruption of the organisms’ normal life processes. The objective of this work is to clean and/or disinfect entire borehole to prepare wells for pump installation. The last water sample was collected after the well disinfec-tion on that time. The results of water chemical analysis are presented in Tables 2-4, and there was nothing found against the specification requirements. After a reaction time of approximately 12 h, the well was cleaned from the sterilization solution by airlifting until chlorine concentration in the water reached 0 mg/l. Then through analyzing the test for samples of water after disinfection and sterilization the wells showed the Iron Bacteria were not seen and the Bacteria Species/Anaerobic Bacteria were absent.展开更多
The disinfected bacteria will be a photoreactivation under the irradiation of the sunlight,and the light intensity plays an important role in the bacteria resurrection.The effect of light intensity on photoreactivatio...The disinfected bacteria will be a photoreactivation under the irradiation of the sunlight,and the light intensity plays an important role in the bacteria resurrection.The effect of light intensity on photoreactivation of Escherichia coli(E.coli) and Enterococcus faecalis(E.faecalis) in secondary effluents which were disinfected respectively by pure UV and UV-TiO_2 was investigated.The results show that the disinfection efficiency of UV-TiO_2 is much higher than that of the pure UV disinfection.The photoreactivation rate of E.coli is much higher in pure UV disinfection than in UV-TiO_2 photocatalytic disinfection.Under high light intensity in UV-TiO_2 disinfection,high resurrection rate can be induced.However,a higher resurrection rate can be introduced even under low light intensity in pure UV disinfection alone.Meanwhile,UV-TiO_2 disinfection has a strong inhibition effect on E.faecalis photoreactivation.When the light intensity is lower than 21 μW/cm^2,nearly no resurrection of E.faecalis occurs after 72 h resurrection irradiation,and a little resurrection rate is observed only under a strong photoreactivating light intensity.展开更多
The hybrid TiO_(2)/AgNPs/g-C_(3) N_(4) nanocomposite coatings were constructed on TC4 alloy by a hydrothermal and calcining method.TiO_(2)/AgNPs/g-C_(3) N_(4) nanocomposite coatings demonstrated excellent biocompatibi...The hybrid TiO_(2)/AgNPs/g-C_(3) N_(4) nanocomposite coatings were constructed on TC4 alloy by a hydrothermal and calcining method.TiO_(2)/AgNPs/g-C_(3) N_(4) nanocomposite coatings demonstrated excellent biocompatibility and osteogenesis compared to those of titanium alloy.The existence of trace AgNPs on the surface and interface of the heterojunction could further enhance the transfer and separation of photogenerated electron/hole pairs,which greatly improved the antibacterial performance under full spectrum light.Holes at the valence band of TiO_(2) and g-C_(3) N_(4) reacted with adsorbed H_(2) O to generate·OH,killing bacteria through photocatalytic redox reaction under light irradiation,while released AgNPs exhibited bacteriostatic efficacy with or without light.This study provides a pathway of coating modification for further improving the antibacterial properties of heterojunction coatings and maintaining the biocompatibility of matrix materials.展开更多
文摘Disinfection is an important step in ensuring that water is safe to drink. Well disinfection is used to inactivate or control bacteria populations in a well and the distribution system. Disinfection is the inactivation or destruction of pathogenic organisms through the disruption of the organisms’ normal life processes. The objective of this work is to clean and/or disinfect entire borehole to prepare wells for pump installation. The last water sample was collected after the well disinfec-tion on that time. The results of water chemical analysis are presented in Tables 2-4, and there was nothing found against the specification requirements. After a reaction time of approximately 12 h, the well was cleaned from the sterilization solution by airlifting until chlorine concentration in the water reached 0 mg/l. Then through analyzing the test for samples of water after disinfection and sterilization the wells showed the Iron Bacteria were not seen and the Bacteria Species/Anaerobic Bacteria were absent.
基金Projects(51174090,51168026)supported by the National Natural Science Foundation of China
文摘The disinfected bacteria will be a photoreactivation under the irradiation of the sunlight,and the light intensity plays an important role in the bacteria resurrection.The effect of light intensity on photoreactivation of Escherichia coli(E.coli) and Enterococcus faecalis(E.faecalis) in secondary effluents which were disinfected respectively by pure UV and UV-TiO_2 was investigated.The results show that the disinfection efficiency of UV-TiO_2 is much higher than that of the pure UV disinfection.The photoreactivation rate of E.coli is much higher in pure UV disinfection than in UV-TiO_2 photocatalytic disinfection.Under high light intensity in UV-TiO_2 disinfection,high resurrection rate can be induced.However,a higher resurrection rate can be introduced even under low light intensity in pure UV disinfection alone.Meanwhile,UV-TiO_2 disinfection has a strong inhibition effect on E.faecalis photoreactivation.When the light intensity is lower than 21 μW/cm^2,nearly no resurrection of E.faecalis occurs after 72 h resurrection irradiation,and a little resurrection rate is observed only under a strong photoreactivating light intensity.
基金supported by the National Natural Science Foundation of China (No. 51801164)Fundamental Research Funds for Central Universities (No. XDJK2020C005)+3 种基金Chongqing Key Laboratory fund of Soft-Matter Material Chemistry and Function Manufacturing (No. 20200006)Venture&Innovation Support Program for Chongqing Overseas Returnees (No. cx2018080)Chongqing College Student innovation and Entrepreneurship Program of Southwest University (No. 202010635076)Zeng Sumin grogram of School of Materials and Energy in Southwest University (No.zsm20201017)。
文摘The hybrid TiO_(2)/AgNPs/g-C_(3) N_(4) nanocomposite coatings were constructed on TC4 alloy by a hydrothermal and calcining method.TiO_(2)/AgNPs/g-C_(3) N_(4) nanocomposite coatings demonstrated excellent biocompatibility and osteogenesis compared to those of titanium alloy.The existence of trace AgNPs on the surface and interface of the heterojunction could further enhance the transfer and separation of photogenerated electron/hole pairs,which greatly improved the antibacterial performance under full spectrum light.Holes at the valence band of TiO_(2) and g-C_(3) N_(4) reacted with adsorbed H_(2) O to generate·OH,killing bacteria through photocatalytic redox reaction under light irradiation,while released AgNPs exhibited bacteriostatic efficacy with or without light.This study provides a pathway of coating modification for further improving the antibacterial properties of heterojunction coatings and maintaining the biocompatibility of matrix materials.