期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Assessment of bacterial biomass in the highly contaminated urban Nanming River,Guiyang,SW China 被引量:1
1
作者 Hao Xiao Hua-Yun Xiao Pan Wu 《Acta Geochimica》 EI CAS CSCD 2017年第4期638-644,共7页
High anthropogenic N loads and abundant bacteria are characteristic of highly contaminated urban rivers.To better understand the dispersal and accumulation of bacteria, we determined contents and isotopic compositions... High anthropogenic N loads and abundant bacteria are characteristic of highly contaminated urban rivers.To better understand the dispersal and accumulation of bacteria, we determined contents and isotopic compositions of suspended particulate organic matter(SPOM) and bacteria in a highly contaminated urban river(the Nanming)and effluents in winter and summer of 2013. Relative to SPOM, bacterial biomass in the river was depleted in ^(13)C and ^(15)N and its C/N ratio was lower(δ^(13)C:-33.2% ± 3.1%; δ^(15)N:-1.5% ± 1.2%; C/N:4.8 ± 0.6), while effluents showed higher ^(13)C and ^(15)N contents and C/N ratios(δ^(13)C:-25% ± 2.1%; δ ^(15)N:-8.5% ± 1.1%; C/N: 8.1 ± 1.2). Source recognition of SPOM was based on carbon isotopes because they are conservative and distinct between end-members(effluent detritus and bacterial biomass). Using a mixing model,bacterial biomass in the river was calculated to account for <20% and <56% of bulk suspended particulate organic nitrogen in winter and summer, respectively. An N budget showed that bacterial N was a small proportion of total nitrogen(<7.4%) in the riverwater. 展开更多
关键词 Δ^13C δ^15C bacterial biomass N budget Nanming River
下载PDF
Seasonal Development of Microbial Activity in Soils of Northern Norway 被引量:15
2
作者 M. BLTER N. SOETHE +1 位作者 R. HORN C. UHLIG 《Pedosphere》 SCIE CAS CSCD 2005年第6期716-727,共12页
Seasonal development of soil microbial activity and bacterial biomass in sub-polar regions was investigated to determine the impacts of biotic and abiotic factors, such as organic matter content, temperature and moist... Seasonal development of soil microbial activity and bacterial biomass in sub-polar regions was investigated to determine the impacts of biotic and abiotic factors, such as organic matter content, temperature and moisture. The study was performed during spring thaw from three cultivated meadows and two non-cultivated forest sites near Alta, in northern Norway. Samples from all five sites showed increasing respiration rates directly after the spring thaw with soil respiration activity best related to soil organic matter content. However, distributions of bacterial biomass showed fewer similarities to these two parameters. This could be explained by variations of litter exploitation through the biomass. Microbial activity started immediately after the thaw while root growth had a longer time lag. An influence of root development on soil microbes was proposed for sites where microorganisms and roots had a tight relationship caused by a more intensive root structure. Also a reduction of microbial activity due to soil compaction in the samples from a wheel track could not be observed under laboratory conditions. New methodological approaches of differential staining for live and dead organisms were applied in order to follow changes within the microbial community. Under laboratory conditions freeze and thaw cycles showed a damaging influence on parts of the soil bacteria. Additionally, different patterns for active vs. non-active bacteria were noticeable after freeze-thaw cycles. 展开更多
关键词 bacterial biomass FREEZING microbial activity soil compaction thawing
下载PDF
Analysis of Chemical and Biological Soil Properties in Organically and Conventionally Fertilized Apple Orchards 被引量:6
3
作者 Takamitsu Kai Masaki Mukai +2 位作者 Kiwako S. Araki Dinesh Adhikari Motoki Kubo 《Journal of Agricultural Chemistry and Environment》 2016年第2期92-99,共8页
We compared chemical and biological properties of soils in organically and conventionally fertilized apple orchards in Nagano Prefecture (one of the major apple producing regions in Japan). Five apple orchards with di... We compared chemical and biological properties of soils in organically and conventionally fertilized apple orchards in Nagano Prefecture (one of the major apple producing regions in Japan). Five apple orchards with different fertilizer management systems were used for this study. The total carbon and total nitrogen contents were higher in the organically fertilized orchard, while the total phosphorus and total potassium were at similar levels in both organically and conventionally fertilized orchards. The bacterial biomass did not differ between the two orchards, but the N circulation activity was clearly higher in the organically fertilized orchard from April to December. Total carbon from 50,000 to 60,000 mg/kg, total nitrogen at about 3000 to 4000 mg/kg, and a C/N ratio of 15 - 20 were suggested to be suitable conditions for a high level of apple production under an organic fertilizer management system. 展开更多
关键词 Component Formatting Style STYLING INSERT Organic Fertilizer Management System APPLE bacterial biomass Nitrogen Circulation Activity
下载PDF
Effect of Steel Slag on Soil Fertility and Plant Growth
4
作者 Zakirul Islam Quoc Thinh Tran +4 位作者 Shohei Koizumi Fumitaka Kato Kimio Ito Kiwako S. Araki Motoki Kubo 《Journal of Agricultural Chemistry and Environment》 CAS 2022年第3期209-221,共13页
The effective utilization of steel slag, a byproduct produced in large quantities from the steel refining process, is an important issue. Because steel slag contains abundant mineral components, the effects of steel s... The effective utilization of steel slag, a byproduct produced in large quantities from the steel refining process, is an important issue. Because steel slag contains abundant mineral components, the effects of steel slag on soil bacterial biomass and plant mineral uptake were analyzed in this study. The soil pH increased in proportion to the amount of steel slag added. A lower concentration (0.2% to 1%) of steel slag addition did not change the bacterial biomass. However, a higher concentration of steel slag (above 1%) had a negative effect on bacterial biomass. A lower amount of steel slag (0.2% to 1%) addition in soil leads to increased mineral (Ca, Mg, and Fe) uptake and plant growth in Brassica rapa var. periviridis and Spinacia oleracea L. However, mineral uptake by the plants decreased when a large amount of steel slag (above 1%) was added to the soil. Low concentrations of steel slag (0.2% to 1%) in soil had positive effects on plant growth, mineral uptake of plants, and bacterial biomass. 展开更多
关键词 bacterial biomass Mineral Uptake Nitrogen Circulation Phosphorus Circulation Plant Growth Steel Slag
下载PDF
Characterization of Orchard Fields Based on Soil Fertility Index (SOFIX)
5
作者 Pitchayapa Pholkaw Quoc Thinh Tran +4 位作者 Takamitsu Kai Taiki Kawagoe Kenzo Kubota Kiwako S. Araki Motoki Kubo 《Journal of Agricultural Chemistry and Environment》 2020年第3期159-176,共18页
Soil samples from 139 agricultural orchard fields (apple, grape, tea, and others) w</span><span style="font-family:Verdana;">ere</span><span style="font-family:Verdana;"> an... Soil samples from 139 agricultural orchard fields (apple, grape, tea, and others) w</span><span style="font-family:Verdana;">ere</span><span style="font-family:Verdana;"> analyzed using the soil fertility index. From these samples, an orchard field database was constructed and the soil properties between orchard, upland, and paddy fields </span><span style="font-family:Verdana;">were </span><span style="font-family:""><span style="font-family:Verdana;">compared. The average value of bacterial biomass in the orchard fields was 7.4 × 10</span><sup><span style="font-family:Verdana;">8</span></sup><span style="font-family:Verdana;"> cells/g-soil, ranging from not detected (lower than 6.6 × 10</span><sup><span style="font-family:Verdana;">6</span></sup><span style="font-family:Verdana;"> cells/g-soil) to 7.7 × 10</span><sup><span style="font-family:Verdana;">9</span></sup><span style="font-family:Verdana;"> cells/g-soil. The average values of total carbon (TC), total nitrogen (TN), total phosphorus (TP), and total potassium (TK), were 24,000 mg/kg (2670 to 128,100 mg/kg), 1460 mg/kg (133 to 6400 mg/kg), 1030 mg/kg (142 to 5362 mg/kg), and 5370 mg/kg (1214 to 18,155 mg/kg), respectively. The C/N and C/P ratios were 19 (3 to 85) and 27 (2 to 101), respectively. Soil properties of the orchard fields were compared with those of the upland and the paddy fields. The average value of bacterial biomass in the orchard fields was almost the same as that in the upland fields (8.0 × 10</span><sup><span style="font-family:Verdana;">8</span></sup><span style="font-family:Verdana;"> cells/g-soil), but the number was lower than that in the paddy fields (12.9 × 10</span><sup><span style="font-family:Verdana;">8</span></sup><span style="font-family:Verdana;"> cells/g-soil). The average values of TC and TN in the orchard fields fell between those in the upland fields (TC: 33,120 mg/kg, TN: 2010 mg/kg) and the paddy fields (TC: 15,420 mg/kg, TN: 1080</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">mg/kg). The relationship between the bacterial biomass and TC in the orchard fields resembled that in the upland fields. A suitable soil condition for the orchard fields was determined as TC: ≥25,000 mg/kg, TN: ≥1500 mg/kg, TP: ≥900 mg/kg and TK: 2500 - 10,000 mg/kg.</span><span style="font-family:""> </span><span style="font-family:Verdana;">These recommended values will be effective for the improvement of the soil quality in the orchard fields by enhancing the number and activities of microorganisms. 展开更多
关键词 Orchard Field Soil Fertility Index (SOFIX) bacterial biomass
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部