The structure and diversity of the bacterial communities in rhizosphere soils of native Phragmites australis and Scirpus rnariqueter and alien Spartina alterniflora in the Yangtze River Estuary were investigated by co...The structure and diversity of the bacterial communities in rhizosphere soils of native Phragmites australis and Scirpus rnariqueter and alien Spartina alterniflora in the Yangtze River Estuary were investigated by constructing 16S ribosomal DNA (rDNA) clone libraries. The bacterial diversity was quantified by placing the clones into operational taxonomic unit (OTU) groups at the level of sequence similarity of 〉 97%. Phylogenetic analysis of the resulting 398 clone sequences indicated a high diversity of bacteria in the rhizosphere soils of these plants. The members of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria of the phylum Proteobacteria were the most abundant in rhizobacteria. Chao 1 nonpaxametric diversity estimator coupled with the reciprocal of Simpson's index (l/D) was applied to sequence data obtained from each library to evaluate total sequence diversity and quantitatively compare the level of dominance. The results showed that Phragmites, Scirpus, and Spartina rhizosphere soils contained 200, 668, and 382 OTUs, respectively. The bacterial communities in the Spartina and Phragraites rhizosphere soils displayed species dominance revealed by 1/D, whereas the bacterial community in Scirpus rhizosphere soil had uniform distributions of species abundance. Overall, analysis of 16S rDNA clone libraries from the rhizosphere soils indicates that the changes in bacterial composition may occur concomitantly with the shift of species composition in plant communities.展开更多
<b>Objective:</b> 120 patients with severe pneumonia who were kept in the comprehensive ICU of our hospital in 2018 were selected, and 16s rDNA sequencing was performed to analyze the composition of pathog...<b>Objective:</b> 120 patients with severe pneumonia who were kept in the comprehensive ICU of our hospital in 2018 were selected, and 16s rDNA sequencing was performed to analyze the composition of pathogenic bacteria in the sputum of severe pneumonia. <b>Methods:</b> The sputum samples of patients with severe bacterial pneumonia were collected, and the diversity of pathogens in the samples was analyzed by polymerase chain reaction (PCR) amplification and high-throughput sequencing (16s rDNA PCR-DGGE). <b>Results:</b> Sequence showed that sputum samples contained a relatively large number of species, and there were many species that were not detected by sequencing. The dominant bacteria were <i>Streptococcus, Sphingomonas, Corynebacterium, Denatobacteria, Aquobacteria, Acinetobacteria, Prevotella, Klebsiella, Pseudomonas</i>, etc. <b>Conclusion:</b> Bacteria caused by sputum of severe bacterial pneumonia are complex and diverse, which provides new methods and ideas for individualized treatment of patients with severe pneumonia.展开更多
[Objectives]The paper was to establish a molecular biological method for identification of bacterial strains.[Methods]The thalli of standard bacterial strains existing in the laboratory were collected and genomic DNA ...[Objectives]The paper was to establish a molecular biological method for identification of bacterial strains.[Methods]The thalli of standard bacterial strains existing in the laboratory were collected and genomic DNA was extracted for amplification of 16S rDNA and gyrB gene.The 16S rDNA and gyrB gene sequences were obtained after sequencing.Sequences were aligned and analyzed via EzBioCloud and NCBI database,and phylogenetic trees were constructed to determine the species relationship of strains.Meantime,they were compared with known strains.[Results]This method could identify 5 standard strains accurately to the species level.The 16S rDNA and gyrB gene sequences were aligned and analyzed in EzBioCloud database and NCBI database.The strain with the max score was consistent with the known strain.And the query cover and ident were both above 99%.[Conclusions]The established molecular biological method for identification of bacterial strains by 16S rDNA and gyrB gene has good accuracy,which effectively solves the problem that the laboratory identification of bacteria relies on traditional methods and the accuracy can not be guaranteed,and further improves the identification ability of laboratory bacterial strains.展开更多
The diagnosis of pathogenic bacteria in severe pneumonia is difficult and the prognosis is poor. Its outcome is closely related to bacterial pathogenicity and the timeliness and pertinence of antibiotic treatment. The...The diagnosis of pathogenic bacteria in severe pneumonia is difficult and the prognosis is poor. Its outcome is closely related to bacterial pathogenicity and the timeliness and pertinence of antibiotic treatment. Therefore, early diagnosis is of great significance to the prognosis of patients. Sputum examination and culture is the gold standard for the diagnosis of pathogens of severe pneumonia. However, due to the long time of bacterial culture, the early use of antibiotics, the change of bacteria species, mixed infection and other problems, the results of bacterial culture in sputum are often false negative. With the continuous application of new molecular biology techniques in clinical detection, the classification of bacteria and microorganisms has deepened from the identification of phenotypic characteristics to the classification of gene characteristics. Sequencing analysis with 16S rDNA sequencing technology has the characteristics of high sequencing flux, large amount of data obtained, short cycle, and can more comprehensively reflect the species composition of microbial community, real species distribution and abundance information. In this paper, 16S rDNA sequencing technology was used to analyze the bacterial population composition in the sputum of severe pneumonia, and to explore a new method of etiological diagnosis.展开更多
AIM: To identify the bacterial flora in conditions such as Barrett's esophagus and reflux esophagitis to determine if they are similar to normal esophageal flora. METHODS: Using broad-range 16S rDNA PCR, esophageal...AIM: To identify the bacterial flora in conditions such as Barrett's esophagus and reflux esophagitis to determine if they are similar to normal esophageal flora. METHODS: Using broad-range 16S rDNA PCR, esophageal biopsies were examined from 24 patients [9 with normal esophageal mucosa, 12 with gastroesophageal reflux disease (GERD), and 3 with Barrett's esophagus]. Two separate broad-range PCR reactions were performed for each patient, and the resulting products were cloned. In one patient with Barrett's esophagus, 99 PCR clones were analyzed. RESULTS: Two separate clones were recovered from each patient (total = 48), representing 24 different species, with 14 species homologous to known bacteria, 5 homologous to unidentified bacteria, and 5 were not homologous (〈97% identity) to any known bacterial 16S rDNA sequences. Seventeen species were found in the reflux esophagitis patients, 5 in the Barrett's esophagus patients, and 10 in normal esophagus patients. Further analysis concentrating on a single biopsy from an individual with Barrett's esophagus revealed the presence of 21 distinct bacterial species. Members of four phyla were represented, including Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria. Microscopic examination of each biopsy demonstrated bacteria in intimate association with the distal esophageal epithelium, suggesting that the presence of these bacteria is not transitory. CONCLUSION: These findings provide evidence for a complex, residential bacterial population in esophageal reflux-related disorders. While much of this biota is present in the normal esophagus, more detailed comparisons may help identify potential disease associations.展开更多
The methods of DAPI staining epifluorescence microscopy and T-RFLP analysis were used to analyze the microbial abundance and diversity in surface seawater sampled from 12 stations inside and outside of the Jiaozhou Ba...The methods of DAPI staining epifluorescence microscopy and T-RFLP analysis were used to analyze the microbial abundance and diversity in surface seawater sampled from 12 stations inside and outside of the Jiaozhou Bay during a survey on 12 and 13 September 2004. The abundance of total microbes is in the range of 10^6~ 10^7 cells/cm^3, similar to those of most semi-enclosed bays in the temperate areas in the world. The highest microbial densities occur in the northeastern part of the Jiaozhou Bay, around the mouths of Loushan and Licun Rivers and the Hongdao aquacultural farming areas, suggesting that the degree and characteristics of pollutions, along with geographical and hydrological effects, may be important determinants affecting the abundance and distribution of bacteria in the Jiaozhou Bay. Bacterial communities inside and outside of the Jiaozhou Bay can be grouped into three classes based on T-RFLP patterns and cluster analyses. Stations at the water channel of the bay mouth and outside, such as D1, D3, D5, D6 and D7, are grouped together to stand for the outside bacterial community interacting with the environment outside of the Jiaozhou Bay. Stations of the innermost side of the Jiaozhou Bay, such as A3, A5, B2 and Y1, are grouped together to stand for the residential bacteria community. Stations C1, C3 and CA are grouped together and may stand for the transitional bacterial assemblage between the residential community and the outside community. However, there is no such a defined relationship for the case of cyanobacterial diversity, indicating the fact that cyanobacteria are more flexible and adaptable to all kinds of conditions.展开更多
The bacterial diversity of activated sludge from submerged membrane bioreactor (SMBR) was investigated. A 16S rDNA clone library was generated, and 150 clones were screened using restriction fragment length polymorphi...The bacterial diversity of activated sludge from submerged membrane bioreactor (SMBR) was investigated. A 16S rDNA clone library was generated, and 150 clones were screened using restriction fragment length polymorphism (RFLP). Of the screened clones, almost full-length 16S rDNA sequences of 64 clones were sequenced. Phylogenetic tree was constructed with a database containing clone sequences from this study and bacterial rDNA sequences from NCBI for identification purposes. The 90.6% of the clones were a?l...展开更多
In this study, the sequencing of 16S ribosomal DNA was used to characterize the soil bacterial community composition and diversity in Liaohe estuarine wetland. Soil samples were taken from different locations in the w...In this study, the sequencing of 16S ribosomal DNA was used to characterize the soil bacterial community composition and diversity in Liaohe estuarine wetland. Soil samples were taken from different locations in the wetland dominated by reed. Moreover, the soil quality parameters were evaluated(p H, moisture, organic matter, total nitrogen, available nitrogen, total phosphorus, available phosphorus). The results showed that the organic matter and nutrient contents were significantly higher in irrigated wetland than those in natural wetland. Major phylogenic groups of bacteria in soil samples including Proteobacteria, Acidobacteria, Gemmatimonadetes, Actinobacteria and Cyanobacteria were analyzed and we found that Proteobacteria was the most abundant in the community, and the phylum Acidobacteria was more abundant in irrigated wetland. Beta diversity analyses indicated that the soil bacterial community was mainly affected by sampling sites rather than seasons. In general, the bacterial community in natural wetland was not significantly different with that in artificial irrigated wetland. Artificial hydraulic engineering irrigated according to the water requirement rule of reed, increased the production of reeds, changed the way of wetland soil material input, but the diversity of bacterial community kept stable relatively.展开更多
The rifampin resistant Alcaligenes faecalis strain A1501R survived at a high, initially stable and later slowly declining population size (10 8 to 10 6 CFU per g dry soil) for 60 days in microcosm experiments. Intr...The rifampin resistant Alcaligenes faecalis strain A1501R survived at a high, initially stable and later slowly declining population size (10 8 to 10 6 CFU per g dry soil) for 60 days in microcosm experiments. Introduction of strain A1501R did not cause great changes in the community profiles generated via microbial community level 16S rDNA based PCR followed by denaturing gradient gel electrophoresis (DGGE) and the Biolog substrate utilization system. The introduction of A1501R had no impact on the dominant bacterial populations in soil. Significant differences in the utilization of some substrates were observed between the control and inoculated soils using a combination of DGGE and Biolog analysis. Results of DGGE and BIOLOG analysis show that introduction of A1501R can affect the lactic acid utilizing bacterial community in case of selection by lactic acid. A specific probe based on the 16S rDNA variable region V6 was constructed via PCR amplification of 16S rDNA using the 971(f) and 1057(r) primers for the detection of A. faecalis strains introduced into soils. Dot blot hybridization of strains or soil DNA and aligment of sequences of the V6 region of 16S rDNA from different bacterial strains show that the V6 probe is very specific for A. faecalis A1501R.展开更多
Bacterial attachment is influenced by the cell surface, attachment media and other environmental factors. Bacterial community composition involved in biofilm formation in extremely high rainfall areas like Cherrapunje...Bacterial attachment is influenced by the cell surface, attachment media and other environmental factors. Bacterial community composition involved in biofilm formation in extremely high rainfall areas like Cherrapunjee has not been reported. The present study was undertaken to characterize bacteria involved in biofilm formation on different substrata in water bodies of Cherrapunjee, the highest rainfall receiving place on planet earth and to assess if the continuous rainfall has an effect on nature and colonization of biofilm bacteria. We developed the biofilm bacteria on stainless steel and glass surfaces immersed in water bodies of the study sites. Isolation of biofilm bacteria were performed on different culture media followed by estimation of protein and carbohydrate content of bacterial exopolysaccharides. 16S rRNA gene sequences were amplified for molecular characterization. The results showed that the biofilm bacterial diversity in water bodies of Cherrapunjee was influenced by substratum and was observed more in stainless steel than glass surface. Scanning electron microscopy images revealed that biofilm microstructure may represent a key determinant of biofilm growth and physiology of associated bacteria. The overall protein content of the extracted EPS of all the isolates were relatively higher than the carbohydrate content. Diverse bacteria proliferated on the substrata regardless of each other's presence, with more diverse bacteria colonizing the substrata on 7th day compared to 15th day of incubation. The biofilm bacteria compositions in the highest rainfall receiving habitat were not distinctly different from reports available, hence not unique from other water bodies.展开更多
To analyze the bacterial communities in lime concretion black soil upon the incorporation of crop residues for two years in wheat-maize system, total DNA was directly extracted and PCR-amplified with the F357GC and R5...To analyze the bacterial communities in lime concretion black soil upon the incorporation of crop residues for two years in wheat-maize system, total DNA was directly extracted and PCR-amplified with the F357GC and R518 primers targeting the 16S rRNA genes of V3 region. The amplified fragments were analyzed by perpendicular DGGE. Analyzing of species richness index S and Shannon diversity index H revealed that there was a high diversity of soil bacterial community compositions among all treatments after incorporation of crop residues and fertilizing under field conditions. Eleven DGGE bands recovered were re-amplified, sequenced. Phylogenetic analysis of the representative DGGE fingerprints identified four groups of the prokaryotic communities in the soil by returning wheat residues and fertilizing under field conditions. The bacterial communities belonged to gamma proteobacterium, Cupriavidus sp, halophilic eubacterium, Acidobacterium sp, Sorangium sp, delta proteobacterium, Streptococcus sp and Streptococcus agalactiae were main bacterial communities. Principal Component Analysis (PCA) showed that there were the differences in DNA profiles among the six treatments. It showed that wheat residue returning, maize residue returning and fertilizing all can improve bacterial diversity in varying degrees. As far as improvement of bacterial diversity was concerned, wheat residue returning was higher than fertilizing, and fertilizing higher than maize residue returning.展开更多
Dialeurolonga malleswaramensis Sundararaj (Hemiptera: Aleyrodidae) is a phytophagous sap sucking insect. It infests Polyalthia longifolia, an important avenue tree of India, effective in alleviating noise pollution...Dialeurolonga malleswaramensis Sundararaj (Hemiptera: Aleyrodidae) is a phytophagous sap sucking insect. It infests Polyalthia longifolia, an important avenue tree of India, effective in alleviating noise pollution and having immense medicinal importance. Samples of this insect were collected from Polyalthia longifolia. The cytochrome c oxidase subunit I gene (mtCOl) helped in the molecular characterization of the insect. This study reports the bacterial diversity in D. malleswararnensis adults by high throughput 16S rDNA amplicon pyrosequencing. The major genera identified were Portiera and Arsenophonus. Other bacterial genera detected were uncultured alpha proteobacterium, Sphingopyxis and Methylobacterium. We also employed fluorescence in situ hybridization (FISH) in whole mount samples to confirm the presence of dominant endosymbionts Portiera and Arsenophonus to the bacteriocyte of D. malleswaramensis. This study concludes that combining techniques like 16S rDNA amplicon pyrosequencing and FISH reveal both dominant and rare bacteria. The data also predict the evolutionary position of this pest with respect to other whitefly species using a mitochondrial marker.展开更多
Fungistasis is one of the important approaches to control soil-borne plant pathogens.Some hypotheses about the mechanisms for soil fungistasis had been established,which mainly focused on the soil bacterial community ...Fungistasis is one of the important approaches to control soil-borne plant pathogens.Some hypotheses about the mechanisms for soil fungistasis had been established,which mainly focused on the soil bacterial community composition,structure,diversity as well as function.In this study,the bacterial community composition and diversity of a series of soils treated by autoclaving,which coming from the same original soil sample and showing gradient fungistasis to the target soil-borne pathogen fungi Fusarium grami...展开更多
In this study, DNAs were extracted from sediment samples at depths of 5, 35, and 69 cm from eutrophic Guanting reservoir, China. 16S rDNAs were amplified by PCR and clone libraries were constructed. The depth-related ...In this study, DNAs were extracted from sediment samples at depths of 5, 35, and 69 cm from eutrophic Guanting reservoir, China. 16S rDNAs were amplified by PCR and clone libraries were constructed. The depth-related distribution of bacterial community in the sediment was characterized by using amplified 16S rDNA restriction analysis (ARDRA) and sequencing of the dominant clones. The results indicated that species diversity in the sediment of Guanting reservoir was rather high with the Shannon-Wiener index about 5.8. Bacterial richness varied in different depths: the highest in the sample of 35 cm in depth; followed by the sample of 5 cm in depth; and the lowest bacterial richness in the sample of 69 cm. Dominant species from the three samples were different although there were some common clones. Phylogenetic analysis showed that all of the dominant clones in the three layers were uncultured bacteria and distantly related to the previously reported species in beta or gamma subclass of proteobacteria, including bacterial groups that have the ability to degrade aromatic hydrocarbons, n-alkanes, chlorinated organic compounds, or to accumulate polyphosphate, etc. Changes of depth-related bacterial community in the Guanting reservoir sediment might reflect the pollution history and the water quality of the reservoir. In addition, the cloned sequences from the Guanting reservoir sediment were all different from the presently reported ones, indicating that there were some particular bacteria in that environment.展开更多
Previous research showed that biochar addition facilitated composting and elevated nutrient retention.However,few of these studies explored bacterial structure and abundance in the compost mixture and biochar additive...Previous research showed that biochar addition facilitated composting and elevated nutrient retention.However,few of these studies explored bacterial structure and abundance in the compost mixture and biochar additive.Thus,this study aims to distinguish bacterial communities in both compost and bamboo biochar(BB)additive.Results indicated that the dynamics of nutrient contents in compost and BB samples were in a similar pattern,although there were lower levels of nutrients and metals(i.e.,Cu and Zn)in BB additives.The total number of operational taxonomic units(OTUs)in both compost and BB additives peaked on day 7 and then gradually reduced during composting.There was more abundance of bacteria in compost,whereas the diversity of bacteria was more in BB additives.Furthermore,the dominant bacteria in compost and BB samples were distinct at the different stages of composting.The Firmicutes steadily decreased in compost samples(from 34.78%to 7.65%),while it was the dominant phylum in BB additives during the whole composting period.Furthermore,Ruminofilibacter,Pseudoxanthomonas,and Actinomadura were the most abundant genera in compost samples than Pseudoxanthomonas,Azoarcus,and Paenibacillus in BB additives at the final stage of composting.Results from this study could provide a theoretical reference for the sound performance of biochar-added composting.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos.30370235 and 30670330)Science and Technology Commission of Shanghai (No.04DZ19304)Ministry of Education of China (No.105063)
文摘The structure and diversity of the bacterial communities in rhizosphere soils of native Phragmites australis and Scirpus rnariqueter and alien Spartina alterniflora in the Yangtze River Estuary were investigated by constructing 16S ribosomal DNA (rDNA) clone libraries. The bacterial diversity was quantified by placing the clones into operational taxonomic unit (OTU) groups at the level of sequence similarity of 〉 97%. Phylogenetic analysis of the resulting 398 clone sequences indicated a high diversity of bacteria in the rhizosphere soils of these plants. The members of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria of the phylum Proteobacteria were the most abundant in rhizobacteria. Chao 1 nonpaxametric diversity estimator coupled with the reciprocal of Simpson's index (l/D) was applied to sequence data obtained from each library to evaluate total sequence diversity and quantitatively compare the level of dominance. The results showed that Phragmites, Scirpus, and Spartina rhizosphere soils contained 200, 668, and 382 OTUs, respectively. The bacterial communities in the Spartina and Phragraites rhizosphere soils displayed species dominance revealed by 1/D, whereas the bacterial community in Scirpus rhizosphere soil had uniform distributions of species abundance. Overall, analysis of 16S rDNA clone libraries from the rhizosphere soils indicates that the changes in bacterial composition may occur concomitantly with the shift of species composition in plant communities.
文摘<b>Objective:</b> 120 patients with severe pneumonia who were kept in the comprehensive ICU of our hospital in 2018 were selected, and 16s rDNA sequencing was performed to analyze the composition of pathogenic bacteria in the sputum of severe pneumonia. <b>Methods:</b> The sputum samples of patients with severe bacterial pneumonia were collected, and the diversity of pathogens in the samples was analyzed by polymerase chain reaction (PCR) amplification and high-throughput sequencing (16s rDNA PCR-DGGE). <b>Results:</b> Sequence showed that sputum samples contained a relatively large number of species, and there were many species that were not detected by sequencing. The dominant bacteria were <i>Streptococcus, Sphingomonas, Corynebacterium, Denatobacteria, Aquobacteria, Acinetobacteria, Prevotella, Klebsiella, Pseudomonas</i>, etc. <b>Conclusion:</b> Bacteria caused by sputum of severe bacterial pneumonia are complex and diverse, which provides new methods and ideas for individualized treatment of patients with severe pneumonia.
基金Supported by Special Project of"Grassland Talents"in Inner Mongolia.
文摘[Objectives]The paper was to establish a molecular biological method for identification of bacterial strains.[Methods]The thalli of standard bacterial strains existing in the laboratory were collected and genomic DNA was extracted for amplification of 16S rDNA and gyrB gene.The 16S rDNA and gyrB gene sequences were obtained after sequencing.Sequences were aligned and analyzed via EzBioCloud and NCBI database,and phylogenetic trees were constructed to determine the species relationship of strains.Meantime,they were compared with known strains.[Results]This method could identify 5 standard strains accurately to the species level.The 16S rDNA and gyrB gene sequences were aligned and analyzed in EzBioCloud database and NCBI database.The strain with the max score was consistent with the known strain.And the query cover and ident were both above 99%.[Conclusions]The established molecular biological method for identification of bacterial strains by 16S rDNA and gyrB gene has good accuracy,which effectively solves the problem that the laboratory identification of bacteria relies on traditional methods and the accuracy can not be guaranteed,and further improves the identification ability of laboratory bacterial strains.
文摘The diagnosis of pathogenic bacteria in severe pneumonia is difficult and the prognosis is poor. Its outcome is closely related to bacterial pathogenicity and the timeliness and pertinence of antibiotic treatment. Therefore, early diagnosis is of great significance to the prognosis of patients. Sputum examination and culture is the gold standard for the diagnosis of pathogens of severe pneumonia. However, due to the long time of bacterial culture, the early use of antibiotics, the change of bacteria species, mixed infection and other problems, the results of bacterial culture in sputum are often false negative. With the continuous application of new molecular biology techniques in clinical detection, the classification of bacteria and microorganisms has deepened from the identification of phenotypic characteristics to the classification of gene characteristics. Sequencing analysis with 16S rDNA sequencing technology has the characteristics of high sequencing flux, large amount of data obtained, short cycle, and can more comprehensively reflect the species composition of microbial community, real species distribution and abundance information. In this paper, 16S rDNA sequencing technology was used to analyze the bacterial population composition in the sputum of severe pneumonia, and to explore a new method of etiological diagnosis.
基金Supported by R01CA97946, R21DK57941, R01GM63270,R01 DK58587, and R01CA77955, and by the General Clinical Research Center core grant to New York University School of Medicine (NIH/NCRR M01 RR00096) from the National Institutes of Health, by the Medical Research Service of the Department of Veterans Affairs, and by the Ellison Medical Foundation
文摘AIM: To identify the bacterial flora in conditions such as Barrett's esophagus and reflux esophagitis to determine if they are similar to normal esophageal flora. METHODS: Using broad-range 16S rDNA PCR, esophageal biopsies were examined from 24 patients [9 with normal esophageal mucosa, 12 with gastroesophageal reflux disease (GERD), and 3 with Barrett's esophagus]. Two separate broad-range PCR reactions were performed for each patient, and the resulting products were cloned. In one patient with Barrett's esophagus, 99 PCR clones were analyzed. RESULTS: Two separate clones were recovered from each patient (total = 48), representing 24 different species, with 14 species homologous to known bacteria, 5 homologous to unidentified bacteria, and 5 were not homologous (〈97% identity) to any known bacterial 16S rDNA sequences. Seventeen species were found in the reflux esophagitis patients, 5 in the Barrett's esophagus patients, and 10 in normal esophagus patients. Further analysis concentrating on a single biopsy from an individual with Barrett's esophagus revealed the presence of 21 distinct bacterial species. Members of four phyla were represented, including Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria. Microscopic examination of each biopsy demonstrated bacteria in intimate association with the distal esophageal epithelium, suggesting that the presence of these bacteria is not transitory. CONCLUSION: These findings provide evidence for a complex, residential bacterial population in esophageal reflux-related disorders. While much of this biota is present in the normal esophagus, more detailed comparisons may help identify potential disease associations.
基金financially supported by the Pilot Projects of Knowledge Innovation Project,Chinese Academy of Sciences under contract Nos KZCX3-SW-214,KZCX3-SW-223 and KZCX3-SW-233the National Natural Science Foundation of China under contract Nos 40476058 and 40576069.
文摘The methods of DAPI staining epifluorescence microscopy and T-RFLP analysis were used to analyze the microbial abundance and diversity in surface seawater sampled from 12 stations inside and outside of the Jiaozhou Bay during a survey on 12 and 13 September 2004. The abundance of total microbes is in the range of 10^6~ 10^7 cells/cm^3, similar to those of most semi-enclosed bays in the temperate areas in the world. The highest microbial densities occur in the northeastern part of the Jiaozhou Bay, around the mouths of Loushan and Licun Rivers and the Hongdao aquacultural farming areas, suggesting that the degree and characteristics of pollutions, along with geographical and hydrological effects, may be important determinants affecting the abundance and distribution of bacteria in the Jiaozhou Bay. Bacterial communities inside and outside of the Jiaozhou Bay can be grouped into three classes based on T-RFLP patterns and cluster analyses. Stations at the water channel of the bay mouth and outside, such as D1, D3, D5, D6 and D7, are grouped together to stand for the outside bacterial community interacting with the environment outside of the Jiaozhou Bay. Stations of the innermost side of the Jiaozhou Bay, such as A3, A5, B2 and Y1, are grouped together to stand for the residential bacteria community. Stations C1, C3 and CA are grouped together and may stand for the transitional bacterial assemblage between the residential community and the outside community. However, there is no such a defined relationship for the case of cyanobacterial diversity, indicating the fact that cyanobacteria are more flexible and adaptable to all kinds of conditions.
基金the National NaturalScience Foundation of China (No. 39925007)the HiTech Research and Development Program (863) of China(No. 2002AA60l021)the Pilot Project of KnowledgeInnovation Program of Chinese Academy of Sciences (No.KSCX2-SW-102)
文摘The bacterial diversity of activated sludge from submerged membrane bioreactor (SMBR) was investigated. A 16S rDNA clone library was generated, and 150 clones were screened using restriction fragment length polymorphism (RFLP). Of the screened clones, almost full-length 16S rDNA sequences of 64 clones were sequenced. Phylogenetic tree was constructed with a database containing clone sequences from this study and bacterial rDNA sequences from NCBI for identification purposes. The 90.6% of the clones were a?l...
基金funded by the National Water Pollution Control and Management Technology Major Project of China(No.2013ZX07202-007)
文摘In this study, the sequencing of 16S ribosomal DNA was used to characterize the soil bacterial community composition and diversity in Liaohe estuarine wetland. Soil samples were taken from different locations in the wetland dominated by reed. Moreover, the soil quality parameters were evaluated(p H, moisture, organic matter, total nitrogen, available nitrogen, total phosphorus, available phosphorus). The results showed that the organic matter and nutrient contents were significantly higher in irrigated wetland than those in natural wetland. Major phylogenic groups of bacteria in soil samples including Proteobacteria, Acidobacteria, Gemmatimonadetes, Actinobacteria and Cyanobacteria were analyzed and we found that Proteobacteria was the most abundant in the community, and the phylum Acidobacteria was more abundant in irrigated wetland. Beta diversity analyses indicated that the soil bacterial community was mainly affected by sampling sites rather than seasons. In general, the bacterial community in natural wetland was not significantly different with that in artificial irrigated wetland. Artificial hydraulic engineering irrigated according to the water requirement rule of reed, increased the production of reeds, changed the way of wetland soil material input, but the diversity of bacterial community kept stable relatively.
文摘The rifampin resistant Alcaligenes faecalis strain A1501R survived at a high, initially stable and later slowly declining population size (10 8 to 10 6 CFU per g dry soil) for 60 days in microcosm experiments. Introduction of strain A1501R did not cause great changes in the community profiles generated via microbial community level 16S rDNA based PCR followed by denaturing gradient gel electrophoresis (DGGE) and the Biolog substrate utilization system. The introduction of A1501R had no impact on the dominant bacterial populations in soil. Significant differences in the utilization of some substrates were observed between the control and inoculated soils using a combination of DGGE and Biolog analysis. Results of DGGE and BIOLOG analysis show that introduction of A1501R can affect the lactic acid utilizing bacterial community in case of selection by lactic acid. A specific probe based on the 16S rDNA variable region V6 was constructed via PCR amplification of 16S rDNA using the 971(f) and 1057(r) primers for the detection of A. faecalis strains introduced into soils. Dot blot hybridization of strains or soil DNA and aligment of sequences of the V6 region of 16S rDNA from different bacterial strains show that the V6 probe is very specific for A. faecalis A1501R.
文摘Bacterial attachment is influenced by the cell surface, attachment media and other environmental factors. Bacterial community composition involved in biofilm formation in extremely high rainfall areas like Cherrapunjee has not been reported. The present study was undertaken to characterize bacteria involved in biofilm formation on different substrata in water bodies of Cherrapunjee, the highest rainfall receiving place on planet earth and to assess if the continuous rainfall has an effect on nature and colonization of biofilm bacteria. We developed the biofilm bacteria on stainless steel and glass surfaces immersed in water bodies of the study sites. Isolation of biofilm bacteria were performed on different culture media followed by estimation of protein and carbohydrate content of bacterial exopolysaccharides. 16S rRNA gene sequences were amplified for molecular characterization. The results showed that the biofilm bacterial diversity in water bodies of Cherrapunjee was influenced by substratum and was observed more in stainless steel than glass surface. Scanning electron microscopy images revealed that biofilm microstructure may represent a key determinant of biofilm growth and physiology of associated bacteria. The overall protein content of the extracted EPS of all the isolates were relatively higher than the carbohydrate content. Diverse bacteria proliferated on the substrata regardless of each other's presence, with more diverse bacteria colonizing the substrata on 7th day compared to 15th day of incubation. The biofilm bacteria compositions in the highest rainfall receiving habitat were not distinctly different from reports available, hence not unique from other water bodies.
文摘To analyze the bacterial communities in lime concretion black soil upon the incorporation of crop residues for two years in wheat-maize system, total DNA was directly extracted and PCR-amplified with the F357GC and R518 primers targeting the 16S rRNA genes of V3 region. The amplified fragments were analyzed by perpendicular DGGE. Analyzing of species richness index S and Shannon diversity index H revealed that there was a high diversity of soil bacterial community compositions among all treatments after incorporation of crop residues and fertilizing under field conditions. Eleven DGGE bands recovered were re-amplified, sequenced. Phylogenetic analysis of the representative DGGE fingerprints identified four groups of the prokaryotic communities in the soil by returning wheat residues and fertilizing under field conditions. The bacterial communities belonged to gamma proteobacterium, Cupriavidus sp, halophilic eubacterium, Acidobacterium sp, Sorangium sp, delta proteobacterium, Streptococcus sp and Streptococcus agalactiae were main bacterial communities. Principal Component Analysis (PCA) showed that there were the differences in DNA profiles among the six treatments. It showed that wheat residue returning, maize residue returning and fertilizing all can improve bacterial diversity in varying degrees. As far as improvement of bacterial diversity was concerned, wheat residue returning was higher than fertilizing, and fertilizing higher than maize residue returning.
文摘Dialeurolonga malleswaramensis Sundararaj (Hemiptera: Aleyrodidae) is a phytophagous sap sucking insect. It infests Polyalthia longifolia, an important avenue tree of India, effective in alleviating noise pollution and having immense medicinal importance. Samples of this insect were collected from Polyalthia longifolia. The cytochrome c oxidase subunit I gene (mtCOl) helped in the molecular characterization of the insect. This study reports the bacterial diversity in D. malleswararnensis adults by high throughput 16S rDNA amplicon pyrosequencing. The major genera identified were Portiera and Arsenophonus. Other bacterial genera detected were uncultured alpha proteobacterium, Sphingopyxis and Methylobacterium. We also employed fluorescence in situ hybridization (FISH) in whole mount samples to confirm the presence of dominant endosymbionts Portiera and Arsenophonus to the bacteriocyte of D. malleswaramensis. This study concludes that combining techniques like 16S rDNA amplicon pyrosequencing and FISH reveal both dominant and rare bacteria. The data also predict the evolutionary position of this pest with respect to other whitefly species using a mitochondrial marker.
文摘Fungistasis is one of the important approaches to control soil-borne plant pathogens.Some hypotheses about the mechanisms for soil fungistasis had been established,which mainly focused on the soil bacterial community composition,structure,diversity as well as function.In this study,the bacterial community composition and diversity of a series of soils treated by autoclaving,which coming from the same original soil sample and showing gradient fungistasis to the target soil-borne pathogen fungi Fusarium grami...
文摘In this study, DNAs were extracted from sediment samples at depths of 5, 35, and 69 cm from eutrophic Guanting reservoir, China. 16S rDNAs were amplified by PCR and clone libraries were constructed. The depth-related distribution of bacterial community in the sediment was characterized by using amplified 16S rDNA restriction analysis (ARDRA) and sequencing of the dominant clones. The results indicated that species diversity in the sediment of Guanting reservoir was rather high with the Shannon-Wiener index about 5.8. Bacterial richness varied in different depths: the highest in the sample of 35 cm in depth; followed by the sample of 5 cm in depth; and the lowest bacterial richness in the sample of 69 cm. Dominant species from the three samples were different although there were some common clones. Phylogenetic analysis showed that all of the dominant clones in the three layers were uncultured bacteria and distantly related to the previously reported species in beta or gamma subclass of proteobacteria, including bacterial groups that have the ability to degrade aromatic hydrocarbons, n-alkanes, chlorinated organic compounds, or to accumulate polyphosphate, etc. Changes of depth-related bacterial community in the Guanting reservoir sediment might reflect the pollution history and the water quality of the reservoir. In addition, the cloned sequences from the Guanting reservoir sediment were all different from the presently reported ones, indicating that there were some particular bacteria in that environment.
基金support from the National Natural Science Foundation of China(No.41907120)the Fundamental Research Funds for the Central Universities(SWU020002)the State Cultivation Base of Eco-agriculture for Southwest Mountainous Land,Southwest University.We also thank anonymous referees for their constructive comments。
文摘Previous research showed that biochar addition facilitated composting and elevated nutrient retention.However,few of these studies explored bacterial structure and abundance in the compost mixture and biochar additive.Thus,this study aims to distinguish bacterial communities in both compost and bamboo biochar(BB)additive.Results indicated that the dynamics of nutrient contents in compost and BB samples were in a similar pattern,although there were lower levels of nutrients and metals(i.e.,Cu and Zn)in BB additives.The total number of operational taxonomic units(OTUs)in both compost and BB additives peaked on day 7 and then gradually reduced during composting.There was more abundance of bacteria in compost,whereas the diversity of bacteria was more in BB additives.Furthermore,the dominant bacteria in compost and BB samples were distinct at the different stages of composting.The Firmicutes steadily decreased in compost samples(from 34.78%to 7.65%),while it was the dominant phylum in BB additives during the whole composting period.Furthermore,Ruminofilibacter,Pseudoxanthomonas,and Actinomadura were the most abundant genera in compost samples than Pseudoxanthomonas,Azoarcus,and Paenibacillus in BB additives at the final stage of composting.Results from this study could provide a theoretical reference for the sound performance of biochar-added composting.