The focal mechanism solutions of the MS. 1 Badong earthquake and subsequent 34 aftershocks at ML 2.0 or more were calculated using the P-wave first motion method; the main earthquake was normal fault dip slip type, an...The focal mechanism solutions of the MS. 1 Badong earthquake and subsequent 34 aftershocks at ML 2.0 or more were calculated using the P-wave first motion method; the main earthquake was normal fault dip slip type, and the slip types of the seismogenic rupture surfaces of the subsequent aftershocks primarily include normal dip slip (14 times), reverse dip slip (9 times), normal strike slip (9 times) and reverse strike slip (2 times). The MS. 1 Badong earthquake activities may be related to the stress adjustment caused by the rise of the groundwater level and the decrease of the frictional resistance between structural planes of rock forma- tions due to the effect of reservoir water penetration, and related to the joint activities of the NE-strike Gaoqiao fault and the near EW-strike Daping fault.展开更多
An M5.1 earthquake occurred in Badong County, only 66 km from the Three Gorges Dam, on De- cember 16, 2013. The continuous gravity observation data obtained at Yichang seismostation nearest to the epi- center (96 km...An M5.1 earthquake occurred in Badong County, only 66 km from the Three Gorges Dam, on De- cember 16, 2013. The continuous gravity observation data obtained at Yichang seismostation nearest to the epi- center (96 km) were analyzed, and it was found that the continuous gravity observation data obtained in this rainy season did not exhibit a characteristic of seasonal change in gravity identical to that in the past years, and thereafter the M5.1 Badong earthquake occurred. Numerical simulation revealed that the water storage and discharge of the Three Gorges reservoir generated seasonal change in gravity, and the changes in atmospheric pressure and gravity load were not the main sources of the seasonal change of continuous gravity observation data whether in respect of magnitude or phase and did not have obvious breaking change on annual variation before the earthquake. Through analysis of the seasonal change data observed on the same site including cavern temperature, rainfall data and global terrestrial water model (CPC) simulated water load, it was thought that, in the observation room with cavern temperature change of only -0.1 l^C/a at Yichang seismostation, the sea- sonal change of continuous gravity observation result mainly originated from the seasonal change in rainfall. In the case that the changes in rainfall and its water load did not have evident breaking change on annual varia- tion law before the earthquake, if the MS. 1 Badong earthquake was the cause of the breaking change on annual variation law in Yichang this time, then it was believed through analysis of crust expansion ratio that similar a- nomaly should occur at a crust expansion and compression intersection, no more than 100 km away from the epicenter.展开更多
针对2013年1月23日辽宁灯塔M_(S)5.1地震,利用引潮力附加构造应力(Additional Tectonic Stress Caused By Tidal Force,ATSCTF)计算模型,计算得到震中位置(41.5°N,123.2°E)在地震前5周以及震后3周(2012年12月16日—2013年2月1...针对2013年1月23日辽宁灯塔M_(S)5.1地震,利用引潮力附加构造应力(Additional Tectonic Stress Caused By Tidal Force,ATSCTF)计算模型,计算得到震中位置(41.5°N,123.2°E)在地震前5周以及震后3周(2012年12月16日—2013年2月15日)的ATSCTF变化。地震发生时,ATSCTF垂直方向分量处于高相位点附近,显示引潮力对本次正断层走滑型地震具有诱发作用。以ATSCTF变化周期的各低相位点时间(2012年12月19日、2013年1月4日、2013年1月18日、2013年2月2日)数据分别为背景,各周期期后数据分别与背景逐日相减,计算研究区(36°N~46°N,118°E~128°E)范围内,National Oceanic and Atmospheric Administration(NOAA)卫星射出长波辐射数据(Outgoing Long Wave Radiation,OLR)在各ATSCTF周期时段分布及其变化。结果显示,无震的ATSCTF变化的A、B、D周期,震中附近OLR无变化;发震的ATSCTF变化的C周期,在空间上,该地区震前OLR仅震中及其南侧区域发生了显著连续升高变化过程,在时间上经历了初始微异常→异常加强→高峰→衰减→发震→平静的演化过程,与岩石应力加载—破裂经历:初始微动破裂→扩张破裂→应力闭锁→地震爆发→平静的力学演化过程中各阶段红外辐射特征一致;显示引潮力对处于临界状态的活动断层具有诱发作用,而OLR是地震构造应力应变过程辐射表征。展开更多
On the basis of the airgun source signals recorded by the stations from January,2016 to June,2017,we use cross-correlation detection technology to obtain the characteristics of the stable phase travel time change of e...On the basis of the airgun source signals recorded by the stations from January,2016 to June,2017,we use cross-correlation detection technology to obtain the characteristics of the stable phase travel time change of each station.We used the Yunlong MS5.0 and Yangbi MS5.1 earthquakes as samples.According to regional characteristics,13 stations with high signal-to-noise ratios and complete data were selected(including 3 fixed stations and 10 active source stations).They are divided into four regions,and on the basis of the GNSS baseline data,the characteristics of regional wave velocity changes before and after the earthquake are analyzed.The results show that the station phase travel time change and the regional stress characteristics represented by the GNSS baseline data have good correlation in the short-term.Due to different degrees of regional stress,there are differences in the travel time changes of different stations in the four regions.Before the Yunlong MS5.0 and Yangbi MS5.1 earthquakes,with regional stress adjustment,there is an upward trend in the travel time changes of related stations in the adjacent areas of up to 0.02 s.The difference is that there are differences in the time nodes and duration of the travel time anomalies,and there is a reverse descent process after the Yangbi MS5.1 earthquake.There are different degrees of travel time fluctuations in the relevant stations before and after the two earthquakes,but the fluctuation range before and after the earthquake was small.Compared with the water level change of the reservoir,the adjustment of the regional stress is more likely to have a substantial impact on the travel time changes of the relevant stations.展开更多
基金supported by the Director Foundation of the Institute of Seismology,China Earthquake Adminstration(IS201246114)the Special Fund of China Three Gorges Corporation(SXSN/3354)
文摘The focal mechanism solutions of the MS. 1 Badong earthquake and subsequent 34 aftershocks at ML 2.0 or more were calculated using the P-wave first motion method; the main earthquake was normal fault dip slip type, and the slip types of the seismogenic rupture surfaces of the subsequent aftershocks primarily include normal dip slip (14 times), reverse dip slip (9 times), normal strike slip (9 times) and reverse strike slip (2 times). The MS. 1 Badong earthquake activities may be related to the stress adjustment caused by the rise of the groundwater level and the decrease of the frictional resistance between structural planes of rock forma- tions due to the effect of reservoir water penetration, and related to the joint activities of the NE-strike Gaoqiao fault and the near EW-strike Daping fault.
基金supported by the Director Foundation of Institute of Seismology,China Earthquake Administration(IS201156069,IS201326123)the National Natural Science Foundation of China(41204058)
文摘An M5.1 earthquake occurred in Badong County, only 66 km from the Three Gorges Dam, on De- cember 16, 2013. The continuous gravity observation data obtained at Yichang seismostation nearest to the epi- center (96 km) were analyzed, and it was found that the continuous gravity observation data obtained in this rainy season did not exhibit a characteristic of seasonal change in gravity identical to that in the past years, and thereafter the M5.1 Badong earthquake occurred. Numerical simulation revealed that the water storage and discharge of the Three Gorges reservoir generated seasonal change in gravity, and the changes in atmospheric pressure and gravity load were not the main sources of the seasonal change of continuous gravity observation data whether in respect of magnitude or phase and did not have obvious breaking change on annual variation before the earthquake. Through analysis of the seasonal change data observed on the same site including cavern temperature, rainfall data and global terrestrial water model (CPC) simulated water load, it was thought that, in the observation room with cavern temperature change of only -0.1 l^C/a at Yichang seismostation, the sea- sonal change of continuous gravity observation result mainly originated from the seasonal change in rainfall. In the case that the changes in rainfall and its water load did not have evident breaking change on annual varia- tion law before the earthquake, if the MS. 1 Badong earthquake was the cause of the breaking change on annual variation law in Yichang this time, then it was believed through analysis of crust expansion ratio that similar a- nomaly should occur at a crust expansion and compression intersection, no more than 100 km away from the epicenter.
基金地震数值预测联合实验室开放基金项目(2020LNEF03)APSCO Earthquake Research Project PhaseⅡ:Integrating Satellite and Ground Observations for Earthquake Signatures and Precursors(WX0519502)。
文摘针对2013年1月23日辽宁灯塔M_(S)5.1地震,利用引潮力附加构造应力(Additional Tectonic Stress Caused By Tidal Force,ATSCTF)计算模型,计算得到震中位置(41.5°N,123.2°E)在地震前5周以及震后3周(2012年12月16日—2013年2月15日)的ATSCTF变化。地震发生时,ATSCTF垂直方向分量处于高相位点附近,显示引潮力对本次正断层走滑型地震具有诱发作用。以ATSCTF变化周期的各低相位点时间(2012年12月19日、2013年1月4日、2013年1月18日、2013年2月2日)数据分别为背景,各周期期后数据分别与背景逐日相减,计算研究区(36°N~46°N,118°E~128°E)范围内,National Oceanic and Atmospheric Administration(NOAA)卫星射出长波辐射数据(Outgoing Long Wave Radiation,OLR)在各ATSCTF周期时段分布及其变化。结果显示,无震的ATSCTF变化的A、B、D周期,震中附近OLR无变化;发震的ATSCTF变化的C周期,在空间上,该地区震前OLR仅震中及其南侧区域发生了显著连续升高变化过程,在时间上经历了初始微异常→异常加强→高峰→衰减→发震→平静的演化过程,与岩石应力加载—破裂经历:初始微动破裂→扩张破裂→应力闭锁→地震爆发→平静的力学演化过程中各阶段红外辐射特征一致;显示引潮力对处于临界状态的活动断层具有诱发作用,而OLR是地震构造应力应变过程辐射表征。
基金sponsored by the Yunnan Youth Seismology Science Fund Project(2018k08)the National Natural Science Foundation of China(41574059,41474048)the Science and Technology Special Fund,Yunnan Earthquake Agency(ZX2015-01,2018ZX04)
文摘On the basis of the airgun source signals recorded by the stations from January,2016 to June,2017,we use cross-correlation detection technology to obtain the characteristics of the stable phase travel time change of each station.We used the Yunlong MS5.0 and Yangbi MS5.1 earthquakes as samples.According to regional characteristics,13 stations with high signal-to-noise ratios and complete data were selected(including 3 fixed stations and 10 active source stations).They are divided into four regions,and on the basis of the GNSS baseline data,the characteristics of regional wave velocity changes before and after the earthquake are analyzed.The results show that the station phase travel time change and the regional stress characteristics represented by the GNSS baseline data have good correlation in the short-term.Due to different degrees of regional stress,there are differences in the travel time changes of different stations in the four regions.Before the Yunlong MS5.0 and Yangbi MS5.1 earthquakes,with regional stress adjustment,there is an upward trend in the travel time changes of related stations in the adjacent areas of up to 0.02 s.The difference is that there are differences in the time nodes and duration of the travel time anomalies,and there is a reverse descent process after the Yangbi MS5.1 earthquake.There are different degrees of travel time fluctuations in the relevant stations before and after the two earthquakes,but the fluctuation range before and after the earthquake was small.Compared with the water level change of the reservoir,the adjustment of the regional stress is more likely to have a substantial impact on the travel time changes of the relevant stations.