将Bag of Features算法引入汽车图像识别领域中,并提出了将DoG(Difference of Gaussian)特征提取算法和PLSA分类算法结合在一起实现车辆和背景图像分类。首先用DoG特征提取算法提取图像特征,用这些特征聚类产生码书并对图像进行柱状图描...将Bag of Features算法引入汽车图像识别领域中,并提出了将DoG(Difference of Gaussian)特征提取算法和PLSA分类算法结合在一起实现车辆和背景图像分类。首先用DoG特征提取算法提取图像特征,用这些特征聚类产生码书并对图像进行柱状图描述,最后设计PLSA分类器对车辆图像和背景图像进行分类。实验对比了该算法与Tamura纹理特征算法和Gabor纹理特征算法在车辆图像识别中的效果。结果表明本文算法分类正确率优于另外两种方法。展开更多
基于视觉的手势识别中,手势的识别效果易受手势旋转,光照亮度的影响,针对该问题,借鉴了目标识别和图像检索领域的Bag of Features(特征袋)算法,将Bag of Features算法应用到手势识别领域。通过SURF(加速鲁棒性特征)算法提取手势图像的...基于视觉的手势识别中,手势的识别效果易受手势旋转,光照亮度的影响,针对该问题,借鉴了目标识别和图像检索领域的Bag of Features(特征袋)算法,将Bag of Features算法应用到手势识别领域。通过SURF(加速鲁棒性特征)算法提取手势图像的特征描述符,使手势对尺度、旋转、光照具有很强的适应力,再应用Bag of Features算法把SURF特征描述符映射到一个统一维度的向量,即Bag of Features特征向量,再用支持向量机对图像得到的特征向量进行训练分类。实验结果表示,该方法不仅具有较高的时间效率,满足手势识别的实时性,而且即使在很大角度的旋转以及亮度的变化下,仍能达到较高的识别率。展开更多
对bag of features(BOF)算法进行研究与改进,并将其应用到图像识别和分类中。针对传统BOF算法执行效率低以及分类精度不够高等缺陷,提出一种结合SURF(speeded up robust feature)与空间金字塔匹配原理的优化方法相结合的图像识别与分类...对bag of features(BOF)算法进行研究与改进,并将其应用到图像识别和分类中。针对传统BOF算法执行效率低以及分类精度不够高等缺陷,提出一种结合SURF(speeded up robust feature)与空间金字塔匹配原理的优化方法相结合的图像识别与分类算法。SURF算法可提高执行效率,而空间金字塔匹配原理的优化方法可提高分类精度。首先对分类图像应用SURF算法提取特征描述符并生成视觉词典,该算法提取的视觉词典能更有效地表示图像特征,且能应对多变的尺度;然后应用空间金字塔匹配原理对图像采用视觉词典的直方图表示,进一步提高分类的准确度;最后利用LIBSVM分类器进行分类。在Graz,Caltech-256和Pascal VOC 2012这3个数据集中进行实验测试。研究结果表明:该方法与传统的BOF算法相比提高了执行效率和分类精度。在数据实验中通过与近几年一些相关研究工作在分类准确率方面进行对比,该方法具有很大的优越性。展开更多
Bag of Words算法是一种有效的基于语义特征提取与表达的物体识别算法,算法充分学习文本检索算法的优点,将图片整理为一系列视觉词汇的集合,提取物体的语义特征,实现感兴趣物体的有效检测与识别。文章主要研究了Bagof Words算法的框架...Bag of Words算法是一种有效的基于语义特征提取与表达的物体识别算法,算法充分学习文本检索算法的优点,将图片整理为一系列视觉词汇的集合,提取物体的语义特征,实现感兴趣物体的有效检测与识别。文章主要研究了Bagof Words算法的框架和基本内容。展开更多
Image classification based on bag-of-words(BOW)has a broad application prospect in pattern recognition field but the shortcomings such as single feature and low classification accuracy are apparent.To deal with this...Image classification based on bag-of-words(BOW)has a broad application prospect in pattern recognition field but the shortcomings such as single feature and low classification accuracy are apparent.To deal with this problem,this paper proposes to combine two ingredients:(i)Three features with functions of mutual complementation are adopted to describe the images,including pyramid histogram of words(PHOW),pyramid histogram of color(PHOC)and pyramid histogram of orientated gradients(PHOG).(ii)An adaptive feature-weight adjusted image categorization algorithm based on the SVM and the decision level fusion of multiple features are employed.Experiments are carried out on the Caltech101 database,which confirms the validity of the proposed approach.The experimental results show that the classification accuracy rate of the proposed method is improved by 7%-14%higher than that of the traditional BOW methods.With full utilization of global,local and spatial information,the algorithm is much more complete and flexible to describe the feature information of the image through the multi-feature fusion and the pyramid structure composed by image spatial multi-resolution decomposition.Significant improvements to the classification accuracy are achieved as the result.展开更多
Imaging and computer vision systems offer the ability to study quantitatively on human physiology. On contrary, manual interpretation requires tremendous amount of work, expertise and excessive processing time. This w...Imaging and computer vision systems offer the ability to study quantitatively on human physiology. On contrary, manual interpretation requires tremendous amount of work, expertise and excessive processing time. This work presents an algorithm that integrates image processing and machine learning to diagnose diabetic retinopathy from retinal fundus images. This automated method classifies diabetic retinopathy (or absence thereof) based on a dataset collected from some publicly available database such as DRIDB0, DRIDB1, MESSIDOR, STARE and HRF. Our approach utilizes bag of words model with Speeded Up Robust Features and demonstrate classification over 180 fundus images containing lesions (hard exudates, soft exudates, microaneurysms, and haemorrhages) and non-lesions with an accuracy of 94.4%, precision of 94%, recall and f1-score of 94% and AUC of 95%. Thus, the proposed approach presents a path toward precise and automated diabetic retinopathy diagnosis on a massive scale.展开更多
Congenital heart defect,accounting for about 30%of congenital defects,is the most common one.Data shows that congenital heart defects have seriously affected the birth rate of healthy newborns.In Fetal andNeonatal Car...Congenital heart defect,accounting for about 30%of congenital defects,is the most common one.Data shows that congenital heart defects have seriously affected the birth rate of healthy newborns.In Fetal andNeonatal Cardiology,medical imaging technology(2D ultrasonic,MRI)has been proved to be helpful to detect congenital defects of the fetal heart and assists sonographers in prenatal diagnosis.It is a highly complex task to recognize 2D fetal heart ultrasonic standard plane(FHUSP)manually.Compared withmanual identification,automatic identification through artificial intelligence can save a lot of time,ensure the efficiency of diagnosis,and improve the accuracy of diagnosis.In this study,a feature extraction method based on texture features(Local Binary Pattern LBP and Histogram of Oriented Gradient HOG)and combined with Bag of Words(BOW)model is carried out,and then feature fusion is performed.Finally,it adopts Support VectorMachine(SVM)to realize automatic recognition and classification of FHUSP.The data includes 788 standard plane data sets and 448 normal and abnormal plane data sets.Compared with some other methods and the single method model,the classification accuracy of our model has been obviously improved,with the highest accuracy reaching 87.35%.Similarly,we also verify the performance of the model in normal and abnormal planes,and the average accuracy in classifying abnormal and normal planes is 84.92%.The experimental results show that thismethod can effectively classify and predict different FHUSP and can provide certain assistance for sonographers to diagnose fetal congenital heart disease.展开更多
针对传统支持向量机(Support Vector Machine,SVM)集成学习(Ensemble Learning,EL)方法不能够解决高维复杂数据且子学习器差异性小集成效果不明显的问题,提出一种基于多种特征选择方法进行Bagging集成的支持向量机学习(Support Vector M...针对传统支持向量机(Support Vector Machine,SVM)集成学习(Ensemble Learning,EL)方法不能够解决高维复杂数据且子学习器差异性小集成效果不明显的问题,提出一种基于多种特征选择方法进行Bagging集成的支持向量机学习(Support Vector M achine Based on M ultiple Feature Selection Bagging,M FSB_SVM)方法.该方法首先采用不同的特征选择方法构建子学习器,以增加不同子学习器间的差异性,并直接从训练数据中对样本特征的重要性进行评估,而无需学习算法的反馈.实验表明,本文提出的MFSB_SVM方法既可以有效解决高维数据问题,也可避免传统SVM集成方法效果不明显的缺点,从而进一步提高学习模型的泛化性能.展开更多
文摘将Bag of Features算法引入汽车图像识别领域中,并提出了将DoG(Difference of Gaussian)特征提取算法和PLSA分类算法结合在一起实现车辆和背景图像分类。首先用DoG特征提取算法提取图像特征,用这些特征聚类产生码书并对图像进行柱状图描述,最后设计PLSA分类器对车辆图像和背景图像进行分类。实验对比了该算法与Tamura纹理特征算法和Gabor纹理特征算法在车辆图像识别中的效果。结果表明本文算法分类正确率优于另外两种方法。
文摘基于视觉的手势识别中,手势的识别效果易受手势旋转,光照亮度的影响,针对该问题,借鉴了目标识别和图像检索领域的Bag of Features(特征袋)算法,将Bag of Features算法应用到手势识别领域。通过SURF(加速鲁棒性特征)算法提取手势图像的特征描述符,使手势对尺度、旋转、光照具有很强的适应力,再应用Bag of Features算法把SURF特征描述符映射到一个统一维度的向量,即Bag of Features特征向量,再用支持向量机对图像得到的特征向量进行训练分类。实验结果表示,该方法不仅具有较高的时间效率,满足手势识别的实时性,而且即使在很大角度的旋转以及亮度的变化下,仍能达到较高的识别率。
文摘对bag of features(BOF)算法进行研究与改进,并将其应用到图像识别和分类中。针对传统BOF算法执行效率低以及分类精度不够高等缺陷,提出一种结合SURF(speeded up robust feature)与空间金字塔匹配原理的优化方法相结合的图像识别与分类算法。SURF算法可提高执行效率,而空间金字塔匹配原理的优化方法可提高分类精度。首先对分类图像应用SURF算法提取特征描述符并生成视觉词典,该算法提取的视觉词典能更有效地表示图像特征,且能应对多变的尺度;然后应用空间金字塔匹配原理对图像采用视觉词典的直方图表示,进一步提高分类的准确度;最后利用LIBSVM分类器进行分类。在Graz,Caltech-256和Pascal VOC 2012这3个数据集中进行实验测试。研究结果表明:该方法与传统的BOF算法相比提高了执行效率和分类精度。在数据实验中通过与近几年一些相关研究工作在分类准确率方面进行对比,该方法具有很大的优越性。
基金Supported by Foundation for Innovative Research Groups of the National Natural Science Foundation of China(61321002)Projects of Major International(Regional)Jiont Research Program NSFC(61120106010)+1 种基金Beijing Education Committee Cooperation Building Foundation ProjectProgram for Changjiang Scholars and Innovative Research Team in University(IRT1208)
文摘Image classification based on bag-of-words(BOW)has a broad application prospect in pattern recognition field but the shortcomings such as single feature and low classification accuracy are apparent.To deal with this problem,this paper proposes to combine two ingredients:(i)Three features with functions of mutual complementation are adopted to describe the images,including pyramid histogram of words(PHOW),pyramid histogram of color(PHOC)and pyramid histogram of orientated gradients(PHOG).(ii)An adaptive feature-weight adjusted image categorization algorithm based on the SVM and the decision level fusion of multiple features are employed.Experiments are carried out on the Caltech101 database,which confirms the validity of the proposed approach.The experimental results show that the classification accuracy rate of the proposed method is improved by 7%-14%higher than that of the traditional BOW methods.With full utilization of global,local and spatial information,the algorithm is much more complete and flexible to describe the feature information of the image through the multi-feature fusion and the pyramid structure composed by image spatial multi-resolution decomposition.Significant improvements to the classification accuracy are achieved as the result.
文摘Imaging and computer vision systems offer the ability to study quantitatively on human physiology. On contrary, manual interpretation requires tremendous amount of work, expertise and excessive processing time. This work presents an algorithm that integrates image processing and machine learning to diagnose diabetic retinopathy from retinal fundus images. This automated method classifies diabetic retinopathy (or absence thereof) based on a dataset collected from some publicly available database such as DRIDB0, DRIDB1, MESSIDOR, STARE and HRF. Our approach utilizes bag of words model with Speeded Up Robust Features and demonstrate classification over 180 fundus images containing lesions (hard exudates, soft exudates, microaneurysms, and haemorrhages) and non-lesions with an accuracy of 94.4%, precision of 94%, recall and f1-score of 94% and AUC of 95%. Thus, the proposed approach presents a path toward precise and automated diabetic retinopathy diagnosis on a massive scale.
基金supported by Fujian Provincial Science and Technology Major Project(No.2020HZ02014)by the grants from National Natural Science Foundation of Fujian(2021J01133,2021J011404)by the Quanzhou Scientific and Technological Planning Projects(Nos.2018C113R,2019C028R,2019C029R,2019C076R and 2019C099R).
文摘Congenital heart defect,accounting for about 30%of congenital defects,is the most common one.Data shows that congenital heart defects have seriously affected the birth rate of healthy newborns.In Fetal andNeonatal Cardiology,medical imaging technology(2D ultrasonic,MRI)has been proved to be helpful to detect congenital defects of the fetal heart and assists sonographers in prenatal diagnosis.It is a highly complex task to recognize 2D fetal heart ultrasonic standard plane(FHUSP)manually.Compared withmanual identification,automatic identification through artificial intelligence can save a lot of time,ensure the efficiency of diagnosis,and improve the accuracy of diagnosis.In this study,a feature extraction method based on texture features(Local Binary Pattern LBP and Histogram of Oriented Gradient HOG)and combined with Bag of Words(BOW)model is carried out,and then feature fusion is performed.Finally,it adopts Support VectorMachine(SVM)to realize automatic recognition and classification of FHUSP.The data includes 788 standard plane data sets and 448 normal and abnormal plane data sets.Compared with some other methods and the single method model,the classification accuracy of our model has been obviously improved,with the highest accuracy reaching 87.35%.Similarly,we also verify the performance of the model in normal and abnormal planes,and the average accuracy in classifying abnormal and normal planes is 84.92%.The experimental results show that thismethod can effectively classify and predict different FHUSP and can provide certain assistance for sonographers to diagnose fetal congenital heart disease.
文摘针对传统支持向量机(Support Vector Machine,SVM)集成学习(Ensemble Learning,EL)方法不能够解决高维复杂数据且子学习器差异性小集成效果不明显的问题,提出一种基于多种特征选择方法进行Bagging集成的支持向量机学习(Support Vector M achine Based on M ultiple Feature Selection Bagging,M FSB_SVM)方法.该方法首先采用不同的特征选择方法构建子学习器,以增加不同子学习器间的差异性,并直接从训练数据中对样本特征的重要性进行评估,而无需学习算法的反馈.实验表明,本文提出的MFSB_SVM方法既可以有效解决高维数据问题,也可避免传统SVM集成方法效果不明显的缺点,从而进一步提高学习模型的泛化性能.