This study considered and predicted blast-induced ground vibration(PPV)in open-pit mines using bagging and sibling techniques under the rigorous combination of machine learning algorithms.Accordingly,four machine lear...This study considered and predicted blast-induced ground vibration(PPV)in open-pit mines using bagging and sibling techniques under the rigorous combination of machine learning algorithms.Accordingly,four machine learning algorithms,including support vector regression(SVR),extra trees(ExTree),K-nearest neighbors(KNN),and decision tree regression(DTR),were used as the base models for the purposes of combination and PPV initial prediction.The bagging regressor(BA)was then applied to combine these base models with the efforts of variance reduction,overfitting elimination,and generating more robust predictive models,abbreviated as BA-ExTree,BAKNN,BA-SVR,and BA-DTR.It is emphasized that the ExTree model has not been considered for predicting blastinduced ground vibration before,and the bagging of ExTree is an innovation aiming to improve the accuracy of the inherently ExTree model,as well.In addition,two empirical models(i.e.,USBM and Ambraseys)were also treated and compared with the bagging models to gain a comprehensive assessment.With this aim,we collected 300 blasting events with different parameters at the Sin Quyen copper mine(Vietnam),and the produced PPV values were also measured.They were then compiled as the dataset to develop the PPV predictive models.The results revealed that the bagging models provided better performance than the empirical models,except for the BA-DTR model.Of those,the BA-ExTree is the best model with the highest accuracy(i.e.,88.8%).Whereas,the empirical models only provided the accuracy from 73.6%–76%.The details of comparisons and assessments were also presented in this study.展开更多
基金funded by Vietnam National Foundation for Science and Tech-nology Development(NAFOSTED)under Grant No.105.99-2019.309.
文摘This study considered and predicted blast-induced ground vibration(PPV)in open-pit mines using bagging and sibling techniques under the rigorous combination of machine learning algorithms.Accordingly,four machine learning algorithms,including support vector regression(SVR),extra trees(ExTree),K-nearest neighbors(KNN),and decision tree regression(DTR),were used as the base models for the purposes of combination and PPV initial prediction.The bagging regressor(BA)was then applied to combine these base models with the efforts of variance reduction,overfitting elimination,and generating more robust predictive models,abbreviated as BA-ExTree,BAKNN,BA-SVR,and BA-DTR.It is emphasized that the ExTree model has not been considered for predicting blastinduced ground vibration before,and the bagging of ExTree is an innovation aiming to improve the accuracy of the inherently ExTree model,as well.In addition,two empirical models(i.e.,USBM and Ambraseys)were also treated and compared with the bagging models to gain a comprehensive assessment.With this aim,we collected 300 blasting events with different parameters at the Sin Quyen copper mine(Vietnam),and the produced PPV values were also measured.They were then compiled as the dataset to develop the PPV predictive models.The results revealed that the bagging models provided better performance than the empirical models,except for the BA-DTR model.Of those,the BA-ExTree is the best model with the highest accuracy(i.e.,88.8%).Whereas,the empirical models only provided the accuracy from 73.6%–76%.The details of comparisons and assessments were also presented in this study.
文摘选择性集成通过选择部分基分类器参与集成,从而提高集成分类器的泛化能力,降低预测开销.但已有的选择性集成算法普遍耗时较长,将数据挖掘的技术应用于选择性集成,提出一种基于FP-Tree(frequent pattern tree)的快速选择性集成算法:CPM-EP(coverage based pattern mining for ensemble pruning).该算法将基分类器对校验样本集的分类结果组织成一个事务数据库,从而使选择性集成问题可转化为对事务数据集的处理问题.针对所有可能的集成分类器大小,CPM-EP算法首先得到一个精简的事务数据库,并创建一棵FP-Tree树保存其内容;然后,基于该FP-Tree获得相应大小的集成分类器.在获得的所有集成分类器中,对校验样本集预测精度最高的集成分类器即为算法的输出.实验结果表明,CPM-EP算法以很低的计算开销获得优越的泛化能力,其分类器选择时间约为GASEN的1/19以及Forward-Selection的1/8,其泛化能力显著优于参与比较的其他方法,而且产生的集成分类器具有较少的基分类器.