期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于KPCA-BP神经网络与GC-MS图谱的白酒价格预测技术
被引量:
2
1
作者
崔安乐
陈明举
+1 位作者
熊兴中
郑佳
《中国酿造》
CAS
北大核心
2023年第7期179-184,共6页
为实现对白酒价格的准确预测,采用气相色谱-质谱(GC-MS)技术对白酒样品的挥发性风味成分进行测定后选择对不同档次白酒样品有显著差异的微量成分,分别采用主成分分析(PCA)与核主成分分析(KPCA)对GC-MS图谱数据进行降维处理,再将降维后...
为实现对白酒价格的准确预测,采用气相色谱-质谱(GC-MS)技术对白酒样品的挥发性风味成分进行测定后选择对不同档次白酒样品有显著差异的微量成分,分别采用主成分分析(PCA)与核主成分分析(KPCA)对GC-MS图谱数据进行降维处理,再将降维后的数据送入到反向传播(BP)神经网络实现价格预测。结果表明,不同档次白酒样品检测出27种挥发性风味成分,其中,酯类8种,醇类9种,酸类9种以及醛类1种;除对不同档次白酒样品无显著性差异的微量成分丁酸乙酯、正己酸乙酯、丙醇、正丁醇、异戊醇和己酸外,采用PCA和KPCA对21种挥发性风味成分进行特征提取。结果表明,PCA前3个主成分累计方差贡献率达87.38%,KPCA前3个核主成分累计方差贡献率达90.02%,KPCA对3种档次白酒在三维空间上有良好的区分度,更能实现白酒特性的准确表达;KPCA-BP神经网络对中、高端白酒预测误差为5%,而PCA-BP神经网络预测误差为15%;白酒价格预测模型验证结果表明,KPCA-BP神经网络方法比PCA-BP神经网络预测的价格更准确,PCA-BP准确率为86.89%,KPCA-BP神经网络准确率达到92.96%。
展开更多
关键词
白酒价格预测
GC-MS图谱
主成分分析
核主成分分析
BP神经网络
下载PDF
职称材料
题名
基于KPCA-BP神经网络与GC-MS图谱的白酒价格预测技术
被引量:
2
1
作者
崔安乐
陈明举
熊兴中
郑佳
机构
四川轻化工大学自动化与信息工程学院
四川轻化工大学自动化与信息工程学院酿酒生物技术及应用四川省重点实验室
宜宾五粮液股份有限公司
出处
《中国酿造》
CAS
北大核心
2023年第7期179-184,共6页
基金
泸州老窖研究生创新基金项目(LJCX2022-7)
五粮液集团-四川轻化工大学产学研合作项目(CXY2020ZR006)
+1 种基金
四川轻化工大学研究生创新基金(Y2022164)
四川轻化工大学校级大学生创新创业训练计划项目(CX2022199)。
文摘
为实现对白酒价格的准确预测,采用气相色谱-质谱(GC-MS)技术对白酒样品的挥发性风味成分进行测定后选择对不同档次白酒样品有显著差异的微量成分,分别采用主成分分析(PCA)与核主成分分析(KPCA)对GC-MS图谱数据进行降维处理,再将降维后的数据送入到反向传播(BP)神经网络实现价格预测。结果表明,不同档次白酒样品检测出27种挥发性风味成分,其中,酯类8种,醇类9种,酸类9种以及醛类1种;除对不同档次白酒样品无显著性差异的微量成分丁酸乙酯、正己酸乙酯、丙醇、正丁醇、异戊醇和己酸外,采用PCA和KPCA对21种挥发性风味成分进行特征提取。结果表明,PCA前3个主成分累计方差贡献率达87.38%,KPCA前3个核主成分累计方差贡献率达90.02%,KPCA对3种档次白酒在三维空间上有良好的区分度,更能实现白酒特性的准确表达;KPCA-BP神经网络对中、高端白酒预测误差为5%,而PCA-BP神经网络预测误差为15%;白酒价格预测模型验证结果表明,KPCA-BP神经网络方法比PCA-BP神经网络预测的价格更准确,PCA-BP准确率为86.89%,KPCA-BP神经网络准确率达到92.96%。
关键词
白酒价格预测
GC-MS图谱
主成分分析
核主成分分析
BP神经网络
Keywords
baijiu price forecast
GC-MS spectrum
principal component analysis
kernel principal component analysis
BP neural network
分类号
TS262.4 [轻工技术与工程—发酵工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于KPCA-BP神经网络与GC-MS图谱的白酒价格预测技术
崔安乐
陈明举
熊兴中
郑佳
《中国酿造》
CAS
北大核心
2023
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部