The Baikal rift is the most seismically active continental rift in the world and is significant for studying the dynamics of continental rifts, although its precise dynamic mechanisms remain controversial. We calculat...The Baikal rift is the most seismically active continental rift in the world and is significant for studying the dynamics of continental rifts, although its precise dynamic mechanisms remain controversial. We calculated receiver functions (1748) from Global Seismographic Network seismic stations TLY and ULN and stacked receiver functions in different bins. Here we present discontinuities at depths of 410km and 660km and thickness of the mantle transition zone (MTZ) beneath the study area. The MTZ structure shows an obvious thickening (292km) in the Baikal rift zone except for an area of limited thinning (230km), whereas it is basically normal (250km) beneath the Mongolian area, to the southeast of the Baikal rift. Combining these results with previous findings, we propose that the large-scale thickening beneath the Baikal rift zone is likely to be caused by the Mesozoic collision between the Siberian Platform and the Mongolia-North China Block or magmatic intrusion into the lower crust, which would result in crust and lithosphere thickening. Thus, the lower crust becomes eclogitized and consequently detached into the deep mantle because of negative buoyancy. The detachment not only induces asthenosphere upwelling but also accelerates mantle convection of water detached from the subducted slab, which would increase mantle melting, while both processes promote the development of the rift. Our preliminary results indicate that the detachment and the consequent hot upwelling have an important influence on the development of the Baikal rift, and a small-scale mantle upwelling indicated by the located thinning may have destroyed the lithosphere and promoted this development.展开更多
HDP09 core drilled in Lake Khuvsgul,Mongoria,at 50°52'48 'N,100°26'30' E where the water depth is 222.25 m reached to the depth of ~60 m below lake floor in 2006.The bottom part of the core c...HDP09 core drilled in Lake Khuvsgul,Mongoria,at 50°52'48 'N,100°26'30' E where the water depth is 222.25 m reached to the depth of ~60 m below lake floor in 2006.The bottom part of the core consists of alkali basalt.This basalt consists of the basement of the lake Khuvsgul based on its bulk chemistry and core position plotted on the seismic profile.K-Ar age of the basalt is(8.5±0.2) Ma,which is concordant with the on-land basalt distributed in the eastern part of the lake,and implies the maximum age of the Lake Khuvsgul formation.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos. 40974025 and 40721003)Innovative Research Group Science Foundation (Grant No. 41021063)National Key Project (Grant No.2008ZX05008-006)
文摘The Baikal rift is the most seismically active continental rift in the world and is significant for studying the dynamics of continental rifts, although its precise dynamic mechanisms remain controversial. We calculated receiver functions (1748) from Global Seismographic Network seismic stations TLY and ULN and stacked receiver functions in different bins. Here we present discontinuities at depths of 410km and 660km and thickness of the mantle transition zone (MTZ) beneath the study area. The MTZ structure shows an obvious thickening (292km) in the Baikal rift zone except for an area of limited thinning (230km), whereas it is basically normal (250km) beneath the Mongolian area, to the southeast of the Baikal rift. Combining these results with previous findings, we propose that the large-scale thickening beneath the Baikal rift zone is likely to be caused by the Mesozoic collision between the Siberian Platform and the Mongolia-North China Block or magmatic intrusion into the lower crust, which would result in crust and lithosphere thickening. Thus, the lower crust becomes eclogitized and consequently detached into the deep mantle because of negative buoyancy. The detachment not only induces asthenosphere upwelling but also accelerates mantle convection of water detached from the subducted slab, which would increase mantle melting, while both processes promote the development of the rift. Our preliminary results indicate that the detachment and the consequent hot upwelling have an important influence on the development of the Baikal rift, and a small-scale mantle upwelling indicated by the located thinning may have destroyed the lithosphere and promoted this development.
基金The Research Fund from Kanazawa University and Grants-in-Aid for Scientific Research from Japanese Society for the promotion of Science(K.Kashiwaya[(A2)20253002])
文摘HDP09 core drilled in Lake Khuvsgul,Mongoria,at 50°52'48 'N,100°26'30' E where the water depth is 222.25 m reached to the depth of ~60 m below lake floor in 2006.The bottom part of the core consists of alkali basalt.This basalt consists of the basement of the lake Khuvsgul based on its bulk chemistry and core position plotted on the seismic profile.K-Ar age of the basalt is(8.5±0.2) Ma,which is concordant with the on-land basalt distributed in the eastern part of the lake,and implies the maximum age of the Lake Khuvsgul formation.