The dynamic tire force of heavy vehicle is a primary reason for road damage. This paper presents a mathematic model to restore the interacting process of vehicle-tire-road system and tries to find out the mechanics of...The dynamic tire force of heavy vehicle is a primary reason for road damage. This paper presents a mathematic model to restore the interacting process of vehicle-tire-road system and tries to find out the mechanics of interaction. A nonlinear tri-axle vehicle model with IBS (integral balanced suspension) is firstly proposed based on the detailed analysis of structural features of a heavy vehicle (DFL1250). The results indicate that the nonlinearities in the vehicle suspension contribute to improvement of ride comfort and to the reduction of dynamic tire force. Furthermore, an FRC (flexible rolling contact) tire model with the enveloping characteristics is added into the IBS model. The tire model considers both the tire contact history with rough road profile and the uneven distribution characteristics of vertical load. The FRC model is able to remove medium and high vibration components from uneven road profile due to its filtering feature. It is expected that these results could supply a new idea for vehicle-road interaction research.展开更多
The aggregation behavior of submicron-sized particles of praseodymium-doped zirconium silicate, a ceramic pigment, in aqueous suspension was predicted by a modified population balance model, In the model, the collisio...The aggregation behavior of submicron-sized particles of praseodymium-doped zirconium silicate, a ceramic pigment, in aqueous suspension was predicted by a modified population balance model, In the model, the collision frequencies were selected to describe evolution of the particle size distribution of the suspension. The collision efficiency was estimated as a function of interaction potential between particles based on Derjaguin-Landau-Verwey-Overbeek theory. The population balance model was modified to predict the stable state of the aggregation by introducing the volume mean size of aggregate to stability ratio. In addition, aggregation of the particles in aqueous suspension in the presence of sodium dodecyl benzene sulfonate or potassium chloride was experimentally investigated. The predicted data (i.e., the final aggregate size, aggregation rate, and particle size distribution) were similar to the experimentalresults.展开更多
基金supported by the NSFC Key Program (Grant No. 10932006)Key Project of Chinese Ministry of Education (Grant No. 210023)the National Natural Science Foundation of China (Grant No. 11072159)
文摘The dynamic tire force of heavy vehicle is a primary reason for road damage. This paper presents a mathematic model to restore the interacting process of vehicle-tire-road system and tries to find out the mechanics of interaction. A nonlinear tri-axle vehicle model with IBS (integral balanced suspension) is firstly proposed based on the detailed analysis of structural features of a heavy vehicle (DFL1250). The results indicate that the nonlinearities in the vehicle suspension contribute to improvement of ride comfort and to the reduction of dynamic tire force. Furthermore, an FRC (flexible rolling contact) tire model with the enveloping characteristics is added into the IBS model. The tire model considers both the tire contact history with rough road profile and the uneven distribution characteristics of vertical load. The FRC model is able to remove medium and high vibration components from uneven road profile due to its filtering feature. It is expected that these results could supply a new idea for vehicle-road interaction research.
文摘The aggregation behavior of submicron-sized particles of praseodymium-doped zirconium silicate, a ceramic pigment, in aqueous suspension was predicted by a modified population balance model, In the model, the collision frequencies were selected to describe evolution of the particle size distribution of the suspension. The collision efficiency was estimated as a function of interaction potential between particles based on Derjaguin-Landau-Verwey-Overbeek theory. The population balance model was modified to predict the stable state of the aggregation by introducing the volume mean size of aggregate to stability ratio. In addition, aggregation of the particles in aqueous suspension in the presence of sodium dodecyl benzene sulfonate or potassium chloride was experimentally investigated. The predicted data (i.e., the final aggregate size, aggregation rate, and particle size distribution) were similar to the experimentalresults.