The Bald Eagle Search algorithm(BES)is an emerging meta-heuristic algorithm.The algorithm simulates the hunting behavior of eagles,and obtains an optimal solution through three stages,namely selection stage,search sta...The Bald Eagle Search algorithm(BES)is an emerging meta-heuristic algorithm.The algorithm simulates the hunting behavior of eagles,and obtains an optimal solution through three stages,namely selection stage,search stage and swooping stage.However,BES tends to drop-in local optimization and the maximum value of search space needs to be improved.To fill this research gap,we propose an improved bald eagle algorithm(CABES)that integrates Cauchy mutation and adaptive optimization to improve the performance of BES from local optima.Firstly,CABES introduces the Cauchy mutation strategy to adjust the step size of the selection stage,to select a better search range.Secondly,in the search stage,CABES updates the search position update formula by an adaptive weight factor to further promote the local optimization capability of BES.To verify the performance of CABES,the benchmark function of CEC2017 is used to simulate the algorithm.The findings of the tests are compared to those of the Particle Swarm Optimization algorithm(PSO),Whale Optimization Algorithm(WOA)and Archimedes Algorithm(AOA).The experimental results show that CABES can provide good exploration and development capabilities,and it has strong competitiveness in testing algorithms.Finally,CABES is applied to four constrained engineering problems and a groundwater engineeringmodel,which further verifies the effectiveness and efficiency of CABES in practical engineering problems.展开更多
Over the last two decades,stochastic optimization algorithms have proved to be a very promising approach to solving a variety of complex optimization problems.Bald eagle search optimization(BES)as a new stochastic opt...Over the last two decades,stochastic optimization algorithms have proved to be a very promising approach to solving a variety of complex optimization problems.Bald eagle search optimization(BES)as a new stochastic optimization algorithm with fast convergence speed has the ability of prominent optimization and the defect of collapsing in the local best.To avoid BES collapse at local optima,inspired by the fact that the volume of the sphere is the largest when the surface area is certain,an improved bald eagle search optimization algorithm(INMBES)integrating the random shrinkage mechanism of the sphere is proposed.Firstly,the INMBES embeds spherical coordinates to design a more accurate parameter update method to modify the coverage and dispersion of the population.Secondly,the population splits into elite and non-elite groups and the Bernoulli chaos is applied to elite group to tap around potential solutions of the INMBES.The non-elite group is redistributed again and the Nelder-Mead simplex strategy is applied to each group to accelerate the evolution of the worst individual and the convergence process of the INMBES.The results of Friedman and Wilcoxon rank sum tests of CEC2017 in 10,30,50,and 100 dimensions numerical optimization confirm that the INMBES has superior performance in convergence accuracy and avoiding falling into local optimization compared with other potential improved algorithms but inferior to the champion algorithm and ranking third.The three engineering constraint optimization problems and 26 real world problems and the problem of extracting the best feature subset by encapsulated feature selection method verify that the INMBES’s performance ranks first and has achieved satisfactory accuracy in solving practical problems.展开更多
基金Project of Key Science and Technology of the Henan Province (No.202102310259)Henan Province University Scientific and Technological Innovation Team (No.18IRTSTHN009).
文摘The Bald Eagle Search algorithm(BES)is an emerging meta-heuristic algorithm.The algorithm simulates the hunting behavior of eagles,and obtains an optimal solution through three stages,namely selection stage,search stage and swooping stage.However,BES tends to drop-in local optimization and the maximum value of search space needs to be improved.To fill this research gap,we propose an improved bald eagle algorithm(CABES)that integrates Cauchy mutation and adaptive optimization to improve the performance of BES from local optima.Firstly,CABES introduces the Cauchy mutation strategy to adjust the step size of the selection stage,to select a better search range.Secondly,in the search stage,CABES updates the search position update formula by an adaptive weight factor to further promote the local optimization capability of BES.To verify the performance of CABES,the benchmark function of CEC2017 is used to simulate the algorithm.The findings of the tests are compared to those of the Particle Swarm Optimization algorithm(PSO),Whale Optimization Algorithm(WOA)and Archimedes Algorithm(AOA).The experimental results show that CABES can provide good exploration and development capabilities,and it has strong competitiveness in testing algorithms.Finally,CABES is applied to four constrained engineering problems and a groundwater engineeringmodel,which further verifies the effectiveness and efficiency of CABES in practical engineering problems.
基金supported by the National Natural Science Foundation of China No.61976176.
文摘Over the last two decades,stochastic optimization algorithms have proved to be a very promising approach to solving a variety of complex optimization problems.Bald eagle search optimization(BES)as a new stochastic optimization algorithm with fast convergence speed has the ability of prominent optimization and the defect of collapsing in the local best.To avoid BES collapse at local optima,inspired by the fact that the volume of the sphere is the largest when the surface area is certain,an improved bald eagle search optimization algorithm(INMBES)integrating the random shrinkage mechanism of the sphere is proposed.Firstly,the INMBES embeds spherical coordinates to design a more accurate parameter update method to modify the coverage and dispersion of the population.Secondly,the population splits into elite and non-elite groups and the Bernoulli chaos is applied to elite group to tap around potential solutions of the INMBES.The non-elite group is redistributed again and the Nelder-Mead simplex strategy is applied to each group to accelerate the evolution of the worst individual and the convergence process of the INMBES.The results of Friedman and Wilcoxon rank sum tests of CEC2017 in 10,30,50,and 100 dimensions numerical optimization confirm that the INMBES has superior performance in convergence accuracy and avoiding falling into local optimization compared with other potential improved algorithms but inferior to the champion algorithm and ranking third.The three engineering constraint optimization problems and 26 real world problems and the problem of extracting the best feature subset by encapsulated feature selection method verify that the INMBES’s performance ranks first and has achieved satisfactory accuracy in solving practical problems.