Rail wear is one of the main reasons for reducing the service life of high-speed railway turnouts in China. The rail wear characteristics of high-speed railway turnouts are influenced by a large number of input parame...Rail wear is one of the main reasons for reducing the service life of high-speed railway turnouts in China. The rail wear characteristics of high-speed railway turnouts are influenced by a large number of input parameters of the complex train-turnout system. To reproduce the actual operation conditions of railway turnouts, random distributions of these inputs need to be considered in rail wear simulation. For a given nominal layout of the high-speed railway turnout, 19 input parameters for rail wear simulation in high-speed railway turnouts are investigated based on orthogonal design of experiment. Three dynamic responses(wheel-rail friction work, normal contact force and size of contact patch) are defined as observed values and the significant factors(direction of passage, axle load, running speed, friction coefficient, and wheel and rail profiles) are determined by two unreplicated saturated factorial design methods, including the half-normal probability plot method and Dong 93 method. As part of the associated rail wear simulation, the influence of the wear models and the local elastic deformation on the rail wear was separately investigated. The calculation results for the wear models are quite different, especially for large creep mode. The local elastic deformation has a large effect on the sliding speed and rail wear and needs to be considered in the rail wear simulation.展开更多
Purpose-It is quite universal for high-speed turnouts to be exposed to the wear of the stock rail of the switch rail during the service process.The wear will cause the change of railhead profile and the relative posit...Purpose-It is quite universal for high-speed turnouts to be exposed to the wear of the stock rail of the switch rail during the service process.The wear will cause the change of railhead profile and the relative positions of the switch rail and the stock rail,which will directly affect the wheel-rail contact state and wheel load transition when a train passes the turnout and will further impose serious impacts on the safety and stability of train operation.The purpose of this paper is to provide suggestions for wear management of high-speed turnout.Design/methodology/approach-The actual wear characteristics of switch rails of high-speed turnouts in different guiding directions were studied based on the monitoring results on site;the authorized wear limits for the switch rails of high-speed turnout were studied through derailment risk analysis and switch rail strength analysis.Findings-The results show that:the major factor for the service life of a curved switch rail is the lateral wear.The wear characteristics of the curved switch rail of a facing turnout are significantly different from those of a trailing turnout.To be specific,the lateral wear of the curved switch rail mainly occurs in the narrower section at its front end for a trailing turnout,but in the wider section at its rear end when for a facing turnout.The maximum lateral wear of a dismounted switch rail from a trailing turnout is found on the 15-mm wide section and is 3.9 mm,which does not reach the specified limit of 6 mm.For comparison,the lateral wear of a dismounted switch rail from a facing turnout is found from the 35-mm wide section to the full-width section and is greater than 7.5 mm,which exceeds the specified limit.Based on this,in addition to meeting the requirements of maintenance rules,the allowed wear of switch rails of high-speed turnout shall be so that the dangerous area with a tangent angle of wheel profile smaller than 43.68 will not contact the switch rail when the wheel is lifted by 2 mm.Accordingly,the lateral wear limit at the 5-mm wide section of the curved switch rail shall be reduced from 6 mm(as specified)to 3.5 mm.Originality/value-The work in this paper is of reference significance to the research on the development law of rail wear in high-speed turnout area and the formulation of relevant standards.展开更多
基金Projects(51425804,51378439,51608459)supported by the National Natural Science Foundation of ChinaProjects(U1334203,U1234201)supported by the Key Project of the China’s High-Speed Railway United Fund+1 种基金Project(2016M590898)supported by China Postdoctoral Science FoundationProject(2014GZ0009)supported by Sichuan Provinial Science and Technology support Program,China
文摘Rail wear is one of the main reasons for reducing the service life of high-speed railway turnouts in China. The rail wear characteristics of high-speed railway turnouts are influenced by a large number of input parameters of the complex train-turnout system. To reproduce the actual operation conditions of railway turnouts, random distributions of these inputs need to be considered in rail wear simulation. For a given nominal layout of the high-speed railway turnout, 19 input parameters for rail wear simulation in high-speed railway turnouts are investigated based on orthogonal design of experiment. Three dynamic responses(wheel-rail friction work, normal contact force and size of contact patch) are defined as observed values and the significant factors(direction of passage, axle load, running speed, friction coefficient, and wheel and rail profiles) are determined by two unreplicated saturated factorial design methods, including the half-normal probability plot method and Dong 93 method. As part of the associated rail wear simulation, the influence of the wear models and the local elastic deformation on the rail wear was separately investigated. The calculation results for the wear models are quite different, especially for large creep mode. The local elastic deformation has a large effect on the sliding speed and rail wear and needs to be considered in the rail wear simulation.
基金supported by the Fund of China Academy of Railway Sciences Corporation Limited (Grant Nos.2022YJ177 and 2022YJ088).
文摘Purpose-It is quite universal for high-speed turnouts to be exposed to the wear of the stock rail of the switch rail during the service process.The wear will cause the change of railhead profile and the relative positions of the switch rail and the stock rail,which will directly affect the wheel-rail contact state and wheel load transition when a train passes the turnout and will further impose serious impacts on the safety and stability of train operation.The purpose of this paper is to provide suggestions for wear management of high-speed turnout.Design/methodology/approach-The actual wear characteristics of switch rails of high-speed turnouts in different guiding directions were studied based on the monitoring results on site;the authorized wear limits for the switch rails of high-speed turnout were studied through derailment risk analysis and switch rail strength analysis.Findings-The results show that:the major factor for the service life of a curved switch rail is the lateral wear.The wear characteristics of the curved switch rail of a facing turnout are significantly different from those of a trailing turnout.To be specific,the lateral wear of the curved switch rail mainly occurs in the narrower section at its front end for a trailing turnout,but in the wider section at its rear end when for a facing turnout.The maximum lateral wear of a dismounted switch rail from a trailing turnout is found on the 15-mm wide section and is 3.9 mm,which does not reach the specified limit of 6 mm.For comparison,the lateral wear of a dismounted switch rail from a facing turnout is found from the 35-mm wide section to the full-width section and is greater than 7.5 mm,which exceeds the specified limit.Based on this,in addition to meeting the requirements of maintenance rules,the allowed wear of switch rails of high-speed turnout shall be so that the dangerous area with a tangent angle of wheel profile smaller than 43.68 will not contact the switch rail when the wheel is lifted by 2 mm.Accordingly,the lateral wear limit at the 5-mm wide section of the curved switch rail shall be reduced from 6 mm(as specified)to 3.5 mm.Originality/value-The work in this paper is of reference significance to the research on the development law of rail wear in high-speed turnout area and the formulation of relevant standards.