期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Ballistic limit and residual velocity of PELE penetrating against metal target 被引量:2
1
作者 姬鹏远 王海福 《Journal of Beijing Institute of Technology》 EI CAS 2011年第2期183-186,共4页
Based on analyzing the conservation of energy of penetrator with enhanced lateral efficiency (PELE) the penetrating against metal target, a theoretical expression predicting the residual velocity of PELE perforating... Based on analyzing the conservation of energy of penetrator with enhanced lateral efficiency (PELE) the penetrating against metal target, a theoretical expression predicting the residual velocity of PELE perforating the target is obtained. By modifying De Marre semi-experience formula,the ballistic limit velocities of PELE penetrating into 2024 aluminum alloy and 45# steel targets are also given. The theoretical predictions fit well with experimental or simulative results. 展开更多
关键词 penetrator with enhanced lateral efficiency(PELE) PENETRATION ballistic limit residual velocity
下载PDF
Ballistic response of skin simulant against fragment simulating projectiles
2
作者 Punit Kumar Pandey Atul Harmukh +2 位作者 M.K.Khan M.A.Iqbal S.G.Ganpule 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第12期70-82,共13页
The response of biological phantoms against high velocity impact is actively sought for applications in defense,space,soft robotics and sensing.Towards this end,we study the ballistic response of silicone based skin s... The response of biological phantoms against high velocity impact is actively sought for applications in defense,space,soft robotics and sensing.Towards this end,we study the ballistic response of silicone based skin simulant against fragment impact.Using a pneumatic gas gun setup,six chisel-nosed and three regular shaped(sphere,cylinder,and cube)fragments were impacted on the skin simulant.The resulting skin simulant response was studied in terms of ballistic limit velocities,energy densities,failure pattern,and the mechanics of interaction.The results indicate that the shape of the fragment affects the ballistic limit velocities.The ballistic limit velocities,energy densities of the chisel-nosed fragment simulating projectiles were relatively insensitive to the size(mass),except for the smallest(0.16 g)and largest(2.79 g)chisel-nosed fragment.For the same size(1 g),ballistic limit velocities and failure are dependent on the shape of the fragment.The skin simulant failed by combined plugging and elastic hole enlargement.Failure in the spherical fragment was dominated by the elastic hole enlargement,whereas plugging failure was dominant in all other fragments.The spherical,cylindrical,and chisel-nosed fragments created circular cavities,and the cubical fragment created a square cavity.In the case of the spherical fragment,slipping of the fragment within the skin simulant was seen.Cubical fragments created lateral cracks emanating from the corners of the square cavity.Interestingly,for all the fragments,the maximum deformation corresponding to the perforation was lower than the non-perforation indicating rate dependent,stress driven failure.The maximum deformation was also dependent on the shape of the fragment.Overall,these results provide unique insights into the mechanical response of a soft simulant against ballistic impact.Results have utility in the calibration and validation of computational models,design of personal protective equipment,and antipersonnel systems. 展开更多
关键词 Skin simulant FRAGMENT Impact ballistic limit velocity Energy density FAILURE
下载PDF
Experiment/simulation correlation-based methodology for metallic ballistic protection solutions
3
作者 Yohan Cosquer Patrice Longère +1 位作者 Olivier Pantalé Claude Gailhac 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第11期24-38,共15页
A methodology is developed based on the coupling of a finite element code with an optimisation module for the design of land vehicle armouring composed of lightweight aluminium alloy and high strength steel plate.Foll... A methodology is developed based on the coupling of a finite element code with an optimisation module for the design of land vehicle armouring composed of lightweight aluminium alloy and high strength steel plate.Following an experiment/simulation correlation,a numerical model has been built and calibrated considering monolithic plates and then verified considering a bi-metal protection against tungsten carbide projectile mimicking the core of a 7.62×51 AP8 ammunition.In addition,a method is proposed to obtain the v_(res)-v_(i) curve for the full 7.62×51 AP8 bullet from the v_(res)-v_(i) curve obtained from the core only. 展开更多
关键词 Impact Terminal ballistics ballistic limit MARS380 Aluminium alloy 7.62×51 AP8
下载PDF
Influences of nanotwin volume fraction on the ballistic performance of coarse-grained metals
4
作者 Q.D.Ouyang G.J.Weng +1 位作者 A.K.Soh X.Guo 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第5期265-268,共4页
Coarse-grained(CG) metals strengthened by nanotwinned(NT) regions possess high strength and good ductility. As such, they are very suitable for applications in bullet-proof targets. Here, a numerical model based o... Coarse-grained(CG) metals strengthened by nanotwinned(NT) regions possess high strength and good ductility. As such, they are very suitable for applications in bullet-proof targets. Here, a numerical model based on the conventional theory of strain gradient plasticity and the Johnson–Cook failure criterion is employed to study the influences of volume fraction of NT regions on their ballistic performance.The results show that in general a relatively small twin spacing(4–10 nm) and a moderate volume fraction(7%–20%) will lead to excellent limit velocity and that the influences of volume fraction on limit displacement change with the category of impact processes. 展开更多
关键词 Nanotwin ballistic performance Volume fraction limit velocity limit displacement
下载PDF
Multi-stage penetration characteristics of thick ultra-high molecular weight polyethylene laminates
5
作者 Ming-jin Cao Li Chen +2 位作者 Rong-zheng Xu Si-jia Liu Qin Fang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期101-110,共10页
To further reveal the failure mechanisms of thick ultra-high molecular weight polyethylene(UHMWPE)laminates,field firing tests were conducted for 10-,20-,and 30-mm thick laminates against 12.7-mm calibre wedge-shaped ... To further reveal the failure mechanisms of thick ultra-high molecular weight polyethylene(UHMWPE)laminates,field firing tests were conducted for 10-,20-,and 30-mm thick laminates against 12.7-mm calibre wedge-shaped fragment simulated projectiles at high velocities between 450 and 1200 m/s.The ballistic performance,deformation process,and staged failure characteristics of the laminates with different thicknesses were compared and analysed.The results demonstrate that the ballistic limits of the UHMWPE laminates increase almost linearly with laminate thickness.The 10-mm thick laminate generally experiences two-stage failure characteristics,whereas three-staged failure occurs in the 20-and 30-mm thick laminates and the progressive delamination is evident.The energy limit concept representing the maximum energy absorption efficiency and the idea of reuse of the thick UHMWPE laminates are proposed in this study.The findings of this research will be useful in the design of flexible and effective UHMWPE-based protective equipment. 展开更多
关键词 UHMWPE laminates ballistic limit Thickness Mechanism Energy limit
下载PDF
Meteoroid and Space Debris Risk Assessment for Satellites Orbiting the Earth/Moon
6
作者 FENG Shuai WANG Ronglan 《空间科学学报》 CAS CSCD 北大核心 2023年第4期724-735,共12页
Interplanetary meteoroids and space debris can impact satellites orbiting the Earth or spacecraft traveling to the Moon.Targeting China Space Station(CSS),7 satellites selected from the constellation of Beidou Navigat... Interplanetary meteoroids and space debris can impact satellites orbiting the Earth or spacecraft traveling to the Moon.Targeting China Space Station(CSS),7 satellites selected from the constellation of Beidou Navigation Satellite System Phase III(BDS-3),and 3 spacecraft orbiting the Moon,we have adopted in the paper the Meteoroid Engineering Model 3,Divine-Staubach meteoroid environment model,and Jenniskens-McBride meteoroid steam model to analyze the meteoroid environment with the mass range of 10–6~10 g.Orbital Debris Engineering Model 3.1 space debris model is used to analyze the orbital debris environment faced by these satellites.The flux of space debris with a size larger than 100μm is compared with that of the meteoroids.The results show that the space debris flux encountered by China Space Station is much higher than that of the meteoroids with sizes in the above range.And quite the opposite,the meteoroids flux impacting the 7 satellites from the BDS-3 is higher.Upon adopting the double-layer Whipple protection measure,the catastrophic collision flux of these satellites encountering meteoroids is about 10–6 times of that without protection,or even less,implying that the Whipple protection effectively guarantees the safety of the satellites in orbit.Besides,it is also found that the flux of the high-density meteoroid population encountered by each satellite is greater than that of the low-density population,whereas the impact velocity is lower for each satellite.These results can aid the orbit selection and the protection design for satellites and spacecraft. 展开更多
关键词 Meteoroid environment model Space debris model ballistic limit equation Impact risk assessment
下载PDF
Oblique perforation of thick metallic plates by rigid projectiles 被引量:8
7
作者 Xiaowei Chen Qingming Li Saucheong Fan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第4期367-376,共10页
Oblique perforation of thick metallic plates by rigid projectiles with various nose shapes is studied in this paper. Two perforation mechanisms, i.e., the hole enlargement for a sharp projectile nose and the plugging ... Oblique perforation of thick metallic plates by rigid projectiles with various nose shapes is studied in this paper. Two perforation mechanisms, i.e., the hole enlargement for a sharp projectile nose and the plugging formation for a blunt projectile nose, are considered in the proposed analytical model. It is shown that the perforation of a thick plate is dominated by several non-dimensional numbers, i.e., the impact function, the geometry function of projectile, the non-dimensional thickness of target and the impact obliquity. Explicit formulae are obtained to predict the ballistic limit, residual velocity and directional change for the oblique perforation of thick metallic plates. The proposed model is able to predict the critical condition for the occurrence of ricochet. The proposed model is validated by comparing the predictions with other existing models and independent experimental data. 展开更多
关键词 Oblique perforation ballistic limit Metallic plate. Rigid projectile Shear plugging
下载PDF
Semi-theoretical analyses of the concrete plate perforated by a rigid projectile 被引量:3
8
作者 Hao Wu Qin Fang +1 位作者 Ya-Dong Zhang Zi-Ming Gong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第6期1630-1643,共14页
Based on the three-stage perforation model, a semi-theoretical analysis is conducted for the ballistic per- formances of a rigid kinetic projectile impacting on concrete plates. By introducing the projectile resistanc... Based on the three-stage perforation model, a semi-theoretical analysis is conducted for the ballistic per- formances of a rigid kinetic projectile impacting on concrete plates. By introducing the projectile resistance coefficients, dimensionless formulae are proposed for depth of penetra- tion (DOP), perforation limit thickness, ballistic limit veloc- ity, residual velocity and perforation ratio, with the projec- tile nosed geometries and projectile-target interfacial fric- tion taken into account. Based on the proposed formula for DOP and lots of penetration tests data of normal and high strength concrete targets, a new expression is obtained for target strength parameter. By comparisons between the re- sults of the proposed formulae and existing empirical formu- lae and large amount of projectile penetration or perforation tests data for monolithic and segmented concrete targets, the validations of the proposed formulae are verified. It is found that the projectile-target interfacial friction can be neglected in the predictions of characteristic ballistic parameters. The dimensionless DOP for low-to-mid speed impacts of non-flat nosed projectiles increases almost linearly with the impact factor by a coefficient of 2/(nS). The anti-perforation ability of the multilayered concrete plates is dependent on both the target plate thickness and the projectile impact velocity. The variation range of the perforation ratio is 1-3.5 for concrete targets. 展开更多
关键词 PROJECTILE Concrete Depth of penetration Perforation limit thickness ballistic limit velocity Resid-ual velocity
下载PDF
Equivalent protection factor of bi-layer ceramic metal structures 被引量:4
9
作者 Govind Gour Sridhar Idapalapati +1 位作者 Wei Liang Goh Xiao-peng Shi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第3期384-400,共17页
With increasing ballistic threat levels,there is ever more demand on developing ceramic armor designs with improved performance.This paper presents finite element simulations that investigate the performance of silico... With increasing ballistic threat levels,there is ever more demand on developing ceramic armor designs with improved performance.This paper presents finite element simulations that investigate the performance of silicon carbide ceramic with steel 4340 backing material and titanium alloy,graphite as buffer layers when subjected to normal and oblique impacts by a tungsten alloy long rod projectile(LRP).Depth of penetration from experimental measurements is compared with simulations to confirm the validity of constitutive,failure model parameters.Titanium alloy cover plate and graphite interface weak layer laterally spread the impact shock away from the SiC tile and reduces the amplification of the stress accumulation at the front surface of the SiC tile.The dwelling time increases before it penetrates into ceramic armor.Further,using AUTODYN®numerical simulations detailed parametric study is carried out to identify the minimum areal density armor for a given ballistic limit velocity.The equivalent protection factor for the bi-layer armor is a simple function of the cosine of the angle of impact. 展开更多
关键词 Ceramic armor Normal and NATO 60⁰impact ballistic limit velocity Equivalent protection factor(EPF)
下载PDF
Research and development on hypervelocity impact protection using Whipple shield:An overview 被引量:3
10
作者 Ken Wen Xiao-wei Chen Yong-gang Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第6期1864-1886,共23页
Whipple shield,a dual-wall system,as well as its improved structures,is widely applied to defend the hypervelocity impact of space debris(projectile).This paper reviews the studies about the mechanism and process of p... Whipple shield,a dual-wall system,as well as its improved structures,is widely applied to defend the hypervelocity impact of space debris(projectile).This paper reviews the studies about the mechanism and process of protection against hypervelocity impacts using Whipple shield.Ground-based experiment and numerical simulation for hypervelocity impact and protection are introduced briefly.Three steps of the Whipple shield protection are discussed in order,including the interaction between the projectile and bumper,the movement and diffusion of the debris cloud,and the interaction between the debris cloud and rear plate.Potential improvements of the protection performance focusing on these three steps are presented.Representative works in the last decade are mentioned specifically.Some prospects and suggestions for future studies are put forward. 展开更多
关键词 Space debris Hypervelocity impact Debris cloud Whipple shield ballistic limit
下载PDF
Mechanical behavior of single-layer graphdiyne via supersonic micro-projectile impact
11
作者 Kailu Xiao Qiuyun Yin +1 位作者 Xianqian Wu Chenguang Huang 《Nano Materials Science》 EI CAS CSCD 2022年第4期383-392,共10页
The mechanical behavior of single-layer graphdiyne(SLGDY)subjected to high-velocity micro-ballistic impacts is analyzed by molecular dynamics(MD)simulations.The ballistic limits of SLGDY is obtained for the first time... The mechanical behavior of single-layer graphdiyne(SLGDY)subjected to high-velocity micro-ballistic impacts is analyzed by molecular dynamics(MD)simulations.The ballistic limits of SLGDY is obtained for the first time.The temperature deterioration effects of the impact resistance are also investigated.The results show that the ballistic limits can reach 75.4%of single-layer graphene(SLGR)at about 1/2 density,leading to approximately the same specific energy absorption(SEA)as SLGR.The ballistic limits of SLGDY and SLGR with single atomic thickness agree with the predictions of macroscopic penetration limits equations,implying the applicability of continuum penetration theories for two-dimensional(2D)materials.In addition,the dynamic responses involving stress wave propagation,conic deformation,and damage evolution are investigated to illuminate the mechanisms of the dynamic energy dissipation.The superior impact resistance of SLGDY and SLGR can be attributed to both the ultra-fast elastic and conic waves and the excellent deformation capabilities.This study provides a deep understanding of the impact behavior of SLGDY,indicating it is a promising protective material. 展开更多
关键词 Graphdiyne ballistic limits Dynamic responses Wave propagation Energy dissipation
下载PDF
PETALLING OF A THIN METAL PLATE STRUCK BY A CONICAL-NOSED PROJECTILE
12
作者 Qiaoguo Wu Heming Wen 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2015年第5期568-577,共10页
A theoretical study is presented herein on the petalling of a fully-clamped thin metal plate struck by a rigid conical-nosed projectile. It is assumed that the energy absorbed in the petalling process consists of two ... A theoretical study is presented herein on the petalling of a fully-clamped thin metal plate struck by a rigid conical-nosed projectile. It is assumed that the energy absorbed in the petalling process consists of two parts, one part is due to the local deformation during the hole formation and the other is from the global response such as bending and membrane stretching. Various energy absorbing mechanisms are delineated and an approximate equation for the ballistic limit is obtained. It transpires that the predictions from the present model are in good agreement with test data available when the is taken into account. sensitivity of the strain rate of the material 展开更多
关键词 thin metal plate conical-nosed projectile petalling ballistic limit
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部