This paper proposes a modified centralized shifted Rayleigh filter(MCSRF) algorithm for tracking boost phase of ballistic missile(BM) trajectory with a highly nonlinear dynamical model based on bearings-only.This ...This paper proposes a modified centralized shifted Rayleigh filter(MCSRF) algorithm for tracking boost phase of ballistic missile(BM) trajectory with a highly nonlinear dynamical model based on bearings-only.This paper contributes three folds.Firstly,the mathematical model of an MCSRF for multiple passive sensors is derived.Then,minimum entropy based onedimensional optimization search to adaptively adjust the probability of the different filters for real time state estimation is deployed.Finally,the unscented transform(UT) is introduced to resolve the asymmetric state estimation problem.Simulation results show that the proposed algorithm can consecutively track the BM precisely during the boost phase.In comparison with the unscented Kalman filter(UKF) algorithm,the proposed algorithm effectively reduces the tracking position and velocity root mean square(RMS) errors,which will make more sense for early precision interception.展开更多
A conditional boost-phase trajectory estimation method based on ballistic missile (BM) information database and classification is developed to estimate and predict boos-phase BM trajectory. The main uncertain factor...A conditional boost-phase trajectory estimation method based on ballistic missile (BM) information database and classification is developed to estimate and predict boos-phase BM trajectory. The main uncertain factors to describe BM dynamics equation are reduced to the control law of trajectory pitch angle in boost-phase. After the BM mass at the beginning of estimation, the BM attack angle and the modification of engine thrust denoting BM acceleration are modeled reasonably, the boost-phase BM trajectory estimation with ground based radar is well realized. The validity of this estimation method is testified by computer simulation with a typical example.展开更多
It is necessary that the laser inertial system is used to further improve the fire accuracy and quick reaction capability in the ballistic missile strapdown inertial navigation system. According to the guidance contro...It is necessary that the laser inertial system is used to further improve the fire accuracy and quick reaction capability in the ballistic missile strapdown inertial navigation system. According to the guidance controlling method and the output and error model of ballistic missile laser SIMU, the mathematical model of error propagation mechanism is set up and any transfer environmental function of error coefficient that affects the fire accuracy is deduced. Also, the missile longitudinal/lateral impact point is calculated using MATLAB. These establish the technical foundation for further researching the dispersion characteristics of impact point and reducing the laser guidance error.展开更多
In the case of the given design variables and constraint functions, this paper is concerned with the rapid overall parameters design of trajectory, propulsion and aerodynamics for long-range ballistic missiles based o...In the case of the given design variables and constraint functions, this paper is concerned with the rapid overall parameters design of trajectory, propulsion and aerodynamics for long-range ballistic missiles based on the index of the minimum take-off mass.In contrast to the traditional subsystem independent design, this paper adopts the research idea of the combination of the subsystem independent design and the multisystem integration design.Firstly, the trajectory, propulsion and aerodynamics of the subsystem are separately designed by the engineering design, including the design of the minimum energy trajectory, the computation of propulsion system parameters, and the calculation of aerodynamic coefficient and dynamic derivative of the missile by employing the software of missile DATCOM. Then, the uniform design method is used to simplify the constraint conditions and the design variables through the integration design, and the accurate design of the optimized variables would be accomplished by adopting the uniform particle swarm optimization(PSO) algorithm. Finally, the automation design software is written for the three-stage solid ballistic missile. The take-off mass of 29 850 kg is derived by the subsystem independent design, and 20 constraints are reduced by employing the uniform design on the basis of 29 design variables and 32 constraints, and the take-off mass is dropped by 1 850 kg by applying the combination of the uniform design and PSO. The simulation results demonstrate the effectiveness and feasibility of the proposed hybrid optimization technique.展开更多
In the re-entry phase of a ballistic missile,decoys can be deployed as a mean to overburden enemy defenses.This results in a single track being split into multiple track-lets.Tracking of these track-lets is a critical...In the re-entry phase of a ballistic missile,decoys can be deployed as a mean to overburden enemy defenses.This results in a single track being split into multiple track-lets.Tracking of these track-lets is a critical task as any miss in the tracking procedure can become a cause of a major threat.The tracking process becomes more complicated in the presence of clutter.The low detection rate is one of the factors that may contribute to increasing the difficulty level in terms of tracking in the cluttered environment.This work introduces a new algorithm for the split event detection and target tracking under the framework of the joint integrated probabilistic data association(JIPDA)algorithm.The proposed algorithm is termed as split event-JIPDA(SE-JIPDA).This work establishes the mathematical foundation for the split target detection and tracking mechanism.The performance analysis is made under different simulation conditions to provide a clear insight into the merits of the proposed algorithm.The performance parameters in these simulations are the root mean square error(RMSE),confirmed true track rate(CTTR)and confirmed split true track rate(CSTTR).展开更多
Considering the problem of multiple ballistic missiles tracking of boost-phase ballistic missile defense, a boost-phase tracking algorithm based on multiple hypotheses tracking (MHT) concept is proposed. This paper ...Considering the problem of multiple ballistic missiles tracking of boost-phase ballistic missile defense, a boost-phase tracking algorithm based on multiple hypotheses tracking (MHT) concept is proposed. This paper focuses on the tracking algo- rithm for hypothesis generation, hypothesis probability calculation, hypotheses reduction and pruning and other sectors. From an engineering point of view, a technique called the linear assignment problem (LAP) used in the implementation of M-best feasible hypotheses generation, the number of the hypotheses is relatively small compared with the total number that may exist in each scan, also the N-scan back pruning is used, the algorithm's efficiency and practicality have been improved. Monte Carlo simulation results show that the proposed algorithm can track the boost phase of multiple ballistic missiles and it has a good tracking performance compared with joint probability data association (JPDA).展开更多
An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic traje...An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic trajectory model is applied to generate training samples,and ablation experiments are conducted to determine the mapping relationship between the flight state and the impact point.At the same time,the impact point coordinates are decoupled to improve the prediction accuracy,and the sigmoid activation function is improved to ameliorate the prediction efficiency.Therefore,an IPP neural network model,which solves the contradiction between the accuracy and the speed of the IPP,is established.In view of the performance deviation of the divert control system,the mapping relationship between the guidance parameters and the impact deviation is analysed based on the variational principle.In addition,a fast iterative model of guidance parameters is designed for reference to the Newton iteration method,which solves the nonlinear strong coupling problem of the guidance parameter solution.Monte Carlo simulation results show that the prediction accuracy of the impact point is high,with a 3 σ prediction error of 4.5 m,and the guidance method is robust,with a 3 σ error of 7.5 m.On the STM32F407 singlechip microcomputer,a single IPP takes about 2.374 ms,and a single guidance solution takes about9.936 ms,which has a good real-time performance and a certain engineering application value.展开更多
The design review, simulation and validation of a Conceptual Design Architecture (CDA) for Ballistic Missile Defense (BMD) are presented. An intercept system that contains a Ground Based Interceptor (GBI) and its guid...The design review, simulation and validation of a Conceptual Design Architecture (CDA) for Ballistic Missile Defense (BMD) are presented. An intercept system that contains a Ground Based Interceptor (GBI) and its guidance sensors (both radar and infrared) are simulated. 3D model using MATLAB is developed for a multistage target with ascent phase acceleration profile that depends on total mass, propellant mass and the specific impulse in the gravity field. The radar cross section (RCS) and infrared radiation (IR) of the target structure is estimated as a function of the flight profile. The Kill Vehicle (KV) design is examined as a function of the KV mass, acceleration capability, aimpoint offset and impact energy to destroy the target. The aim of the CDA is to: detect the launch of a threat ballistic missile, determine whether the detected object is a threat,define the characteristics of the threat ballistic missile, develop a firing solution to negate the threat ballistic missile, engage the threat ballistic missile, and assess the effectiveness for ballistic missile intercept. The architecture is modeled in Matlab.展开更多
The nonlinear dynamic model of spinning ballistic missiles is established during the first boosting phase of the missile. Based on the conventional backstepping sliding mode control and the assumption of a two time-sc...The nonlinear dynamic model of spinning ballistic missiles is established during the first boosting phase of the missile. Based on the conventional backstepping sliding mode control and the assumption of a two time-scale separation of missile dynamics, a graded sliding mode controller is designed with two sub-sliding surfaces which have invariability to external disturbances and parameter perturbations, and a matrix which comprises three first order low pass filters is introduced to prevent “explosion of terms”. Owing to the upper bounds of the uncertainties are difficult to obtain in advance, adaptive laws are introduced to estimate the values of the uncertainties in real-time. Eventually, the numerical simulation results given to show the proposed controller can ensure the steady flight of missiles.展开更多
末段反导指控与作战管理(Command,Control and Battle Manangement,C2BM)系统是末段反导系统的指挥控制中心。在系统分析末段反导系统的组成及末段反导C2BM系统工作过程的基础上,初步探讨了基于DoDAF(De-partment of Defense Architectu...末段反导指控与作战管理(Command,Control and Battle Manangement,C2BM)系统是末段反导系统的指挥控制中心。在系统分析末段反导系统的组成及末段反导C2BM系统工作过程的基础上,初步探讨了基于DoDAF(De-partment of Defense Architecture Framework)的末段反导C2BM系统需求分析方法和步骤,建立了末段反导C2BM系统的作战视图,对末段反导C2BM系统的体系结构及其信息交互进行了深入分析和可视化建模,保证了对末段反导C2BM系统需求理解的一致性,有效促进了军事人员与分析设计人员间的沟通和交流,为后续的开发夯实坚实的基础。展开更多
指挥控制、作战管理和通信(command and control,battle management and communications,c2BMC)系统是美国弹道导弹防御的核心。通过详细分析C2BMC系统的功能、目标和研制进展,找出了其薄弱环节,在此基础上提出了一些对策与思考...指挥控制、作战管理和通信(command and control,battle management and communications,c2BMC)系统是美国弹道导弹防御的核心。通过详细分析C2BMC系统的功能、目标和研制进展,找出了其薄弱环节,在此基础上提出了一些对策与思考,对弹道导弹的发展建设具有重要指导意义。展开更多
基金supported by the Aerospace Science and Technology Innovation Foundation (CASC0202-3)
文摘This paper proposes a modified centralized shifted Rayleigh filter(MCSRF) algorithm for tracking boost phase of ballistic missile(BM) trajectory with a highly nonlinear dynamical model based on bearings-only.This paper contributes three folds.Firstly,the mathematical model of an MCSRF for multiple passive sensors is derived.Then,minimum entropy based onedimensional optimization search to adaptively adjust the probability of the different filters for real time state estimation is deployed.Finally,the unscented transform(UT) is introduced to resolve the asymmetric state estimation problem.Simulation results show that the proposed algorithm can consecutively track the BM precisely during the boost phase.In comparison with the unscented Kalman filter(UKF) algorithm,the proposed algorithm effectively reduces the tracking position and velocity root mean square(RMS) errors,which will make more sense for early precision interception.
文摘A conditional boost-phase trajectory estimation method based on ballistic missile (BM) information database and classification is developed to estimate and predict boos-phase BM trajectory. The main uncertain factors to describe BM dynamics equation are reduced to the control law of trajectory pitch angle in boost-phase. After the BM mass at the beginning of estimation, the BM attack angle and the modification of engine thrust denoting BM acceleration are modeled reasonably, the boost-phase BM trajectory estimation with ground based radar is well realized. The validity of this estimation method is testified by computer simulation with a typical example.
文摘It is necessary that the laser inertial system is used to further improve the fire accuracy and quick reaction capability in the ballistic missile strapdown inertial navigation system. According to the guidance controlling method and the output and error model of ballistic missile laser SIMU, the mathematical model of error propagation mechanism is set up and any transfer environmental function of error coefficient that affects the fire accuracy is deduced. Also, the missile longitudinal/lateral impact point is calculated using MATLAB. These establish the technical foundation for further researching the dispersion characteristics of impact point and reducing the laser guidance error.
文摘In the case of the given design variables and constraint functions, this paper is concerned with the rapid overall parameters design of trajectory, propulsion and aerodynamics for long-range ballistic missiles based on the index of the minimum take-off mass.In contrast to the traditional subsystem independent design, this paper adopts the research idea of the combination of the subsystem independent design and the multisystem integration design.Firstly, the trajectory, propulsion and aerodynamics of the subsystem are separately designed by the engineering design, including the design of the minimum energy trajectory, the computation of propulsion system parameters, and the calculation of aerodynamic coefficient and dynamic derivative of the missile by employing the software of missile DATCOM. Then, the uniform design method is used to simplify the constraint conditions and the design variables through the integration design, and the accurate design of the optimized variables would be accomplished by adopting the uniform particle swarm optimization(PSO) algorithm. Finally, the automation design software is written for the three-stage solid ballistic missile. The take-off mass of 29 850 kg is derived by the subsystem independent design, and 20 constraints are reduced by employing the uniform design on the basis of 29 design variables and 32 constraints, and the take-off mass is dropped by 1 850 kg by applying the combination of the uniform design and PSO. The simulation results demonstrate the effectiveness and feasibility of the proposed hybrid optimization technique.
文摘In the re-entry phase of a ballistic missile,decoys can be deployed as a mean to overburden enemy defenses.This results in a single track being split into multiple track-lets.Tracking of these track-lets is a critical task as any miss in the tracking procedure can become a cause of a major threat.The tracking process becomes more complicated in the presence of clutter.The low detection rate is one of the factors that may contribute to increasing the difficulty level in terms of tracking in the cluttered environment.This work introduces a new algorithm for the split event detection and target tracking under the framework of the joint integrated probabilistic data association(JIPDA)algorithm.The proposed algorithm is termed as split event-JIPDA(SE-JIPDA).This work establishes the mathematical foundation for the split target detection and tracking mechanism.The performance analysis is made under different simulation conditions to provide a clear insight into the merits of the proposed algorithm.The performance parameters in these simulations are the root mean square error(RMSE),confirmed true track rate(CTTR)and confirmed split true track rate(CSTTR).
文摘Considering the problem of multiple ballistic missiles tracking of boost-phase ballistic missile defense, a boost-phase tracking algorithm based on multiple hypotheses tracking (MHT) concept is proposed. This paper focuses on the tracking algo- rithm for hypothesis generation, hypothesis probability calculation, hypotheses reduction and pruning and other sectors. From an engineering point of view, a technique called the linear assignment problem (LAP) used in the implementation of M-best feasible hypotheses generation, the number of the hypotheses is relatively small compared with the total number that may exist in each scan, also the N-scan back pruning is used, the algorithm's efficiency and practicality have been improved. Monte Carlo simulation results show that the proposed algorithm can track the boost phase of multiple ballistic missiles and it has a good tracking performance compared with joint probability data association (JPDA).
基金supported by the National Natural Science Foundation of China (Grant No.62103432)supported by Young Talent fund of University Association for Science and Technology in Shaanxi, China(Grant No.20210108)。
文摘An impact point prediction(IPP) guidance based on supervised learning is proposed to address the problem of precise guidance for the ballistic missile in high maneuver penetration condition.An accurate ballistic trajectory model is applied to generate training samples,and ablation experiments are conducted to determine the mapping relationship between the flight state and the impact point.At the same time,the impact point coordinates are decoupled to improve the prediction accuracy,and the sigmoid activation function is improved to ameliorate the prediction efficiency.Therefore,an IPP neural network model,which solves the contradiction between the accuracy and the speed of the IPP,is established.In view of the performance deviation of the divert control system,the mapping relationship between the guidance parameters and the impact deviation is analysed based on the variational principle.In addition,a fast iterative model of guidance parameters is designed for reference to the Newton iteration method,which solves the nonlinear strong coupling problem of the guidance parameter solution.Monte Carlo simulation results show that the prediction accuracy of the impact point is high,with a 3 σ prediction error of 4.5 m,and the guidance method is robust,with a 3 σ error of 7.5 m.On the STM32F407 singlechip microcomputer,a single IPP takes about 2.374 ms,and a single guidance solution takes about9.936 ms,which has a good real-time performance and a certain engineering application value.
文摘The design review, simulation and validation of a Conceptual Design Architecture (CDA) for Ballistic Missile Defense (BMD) are presented. An intercept system that contains a Ground Based Interceptor (GBI) and its guidance sensors (both radar and infrared) are simulated. 3D model using MATLAB is developed for a multistage target with ascent phase acceleration profile that depends on total mass, propellant mass and the specific impulse in the gravity field. The radar cross section (RCS) and infrared radiation (IR) of the target structure is estimated as a function of the flight profile. The Kill Vehicle (KV) design is examined as a function of the KV mass, acceleration capability, aimpoint offset and impact energy to destroy the target. The aim of the CDA is to: detect the launch of a threat ballistic missile, determine whether the detected object is a threat,define the characteristics of the threat ballistic missile, develop a firing solution to negate the threat ballistic missile, engage the threat ballistic missile, and assess the effectiveness for ballistic missile intercept. The architecture is modeled in Matlab.
文摘The nonlinear dynamic model of spinning ballistic missiles is established during the first boosting phase of the missile. Based on the conventional backstepping sliding mode control and the assumption of a two time-scale separation of missile dynamics, a graded sliding mode controller is designed with two sub-sliding surfaces which have invariability to external disturbances and parameter perturbations, and a matrix which comprises three first order low pass filters is introduced to prevent “explosion of terms”. Owing to the upper bounds of the uncertainties are difficult to obtain in advance, adaptive laws are introduced to estimate the values of the uncertainties in real-time. Eventually, the numerical simulation results given to show the proposed controller can ensure the steady flight of missiles.
文摘末段反导指控与作战管理(Command,Control and Battle Manangement,C2BM)系统是末段反导系统的指挥控制中心。在系统分析末段反导系统的组成及末段反导C2BM系统工作过程的基础上,初步探讨了基于DoDAF(De-partment of Defense Architecture Framework)的末段反导C2BM系统需求分析方法和步骤,建立了末段反导C2BM系统的作战视图,对末段反导C2BM系统的体系结构及其信息交互进行了深入分析和可视化建模,保证了对末段反导C2BM系统需求理解的一致性,有效促进了军事人员与分析设计人员间的沟通和交流,为后续的开发夯实坚实的基础。
文摘指挥控制、作战管理和通信(command and control,battle management and communications,c2BMC)系统是美国弹道导弹防御的核心。通过详细分析C2BMC系统的功能、目标和研制进展,找出了其薄弱环节,在此基础上提出了一些对策与思考,对弹道导弹的发展建设具有重要指导意义。