期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Estimation of ballistic coefficients of space debris using the ratios between different objects
1
作者 Zhejun LU Weidong HU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第3期1204-1216,共13页
This paper proposes a new method to estimate the ballistic coefficient(BC) of low earth orbit space debris.The data sources are the historical two-line elements(TLEs).Since the secular variation of semi-major axes... This paper proposes a new method to estimate the ballistic coefficient(BC) of low earth orbit space debris.The data sources are the historical two-line elements(TLEs).Since the secular variation of semi-major axes is mainly caused by the drag perturbation for space objects with perigee altitude below 600 km,the ballistic coefficients are estimated based on variation of the mean semi-major axes derived from the TLEs.However,the approximate parameters used in the calculation have error,especially when the upper atmosphere densities are difficult to obtain and always estimated by empirical model.The proportional errors of the approximate parameters are cancelled out in the form of ratios,greatly mitigating the effects of model error.This method has been also been validated for space objects with perigee altitude higher than 600 km.The relative errors of estimated BC values from the new method are significantly smaller than those from the direct estimation methods used in numerical experiments.The estimated BC values are used for the prediction of the semi-major axes,and good performance is obtained.This process is also a feasible method for prediction over a long period of time without an orbital propagator model. 展开更多
关键词 ballistic coefficient grouping ratio space debris tle
原文传递
一种LSTM模型预测BC值的空间碎片无控再入预报方法 被引量:1
2
作者 蒯家伟 赵柯昕 +1 位作者 孙立刚 廖名传 《宇航学报》 EI CAS CSCD 北大核心 2022年第12期1731-1738,共8页
提出一种利用长短周期记忆(LSTM)神经网络模型动态预测无控再入过程中弹道系数(BC)值实现空间碎片高精度再入时刻预报。通过利用空间碎片两行根数(TLE)、简化通用摄动模型(SGP4)与公开的物体陨落时间作为实测数据样本,利用迭代修正BC值... 提出一种利用长短周期记忆(LSTM)神经网络模型动态预测无控再入过程中弹道系数(BC)值实现空间碎片高精度再入时刻预报。通过利用空间碎片两行根数(TLE)、简化通用摄动模型(SGP4)与公开的物体陨落时间作为实测数据样本,利用迭代修正BC值方法构建预测模型的训练集,由此构造用于预测BC值的LSTM模型预测BC,再采用高精度轨道外推动力学模型配合预测BC值预报再入时刻,结果表明基于LSTM模型预测BC的空间碎片再入时刻预报方法是可行的,在95%的置信度内,90天以上的再入时刻预报精度小于10%,30天预报精度小于8%。 展开更多
关键词 空间碎片 弹道系数(BC) 长短期记忆(LSTM)神经网络 两行根数(tle) 再入预报
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部