An infrared (IR) imaging simulation framework based on the strap-down platform is proposed for midcourse ballistic targets. It overcomes the shortcoming of the existing algorithms, which cannot simulate IR imaging f...An infrared (IR) imaging simulation framework based on the strap-down platform is proposed for midcourse ballistic targets. It overcomes the shortcoming of the existing algorithms, which cannot simulate IR imaging from the entire midcourse process. The proposed framework includes three steps, target characteristic modeling, motion modeling, and imaging modeling. In imaging modeling, the staring focal plane is taken into account due to its wide employment. In order to obtain IR images of high fidelity, especially that the fluctuation of the target signal-to-noise ratio (SNR) is reasonably similar to the actual one, this paper proposes an improved IR imaging simulation method. The proposed method considers two critical factors of the pixel plane, occupy-empty ratio and defect elements, which affect the imaging of targets markedly but are neglected in previous work. Finally, the IR image sequence of high fidelity is obtained. And the correlative parameters of simulation can be set according to the given scene. Thus the generated images can satisfy the needs of algorithms validation for tracking and recognition.展开更多
For ballistic mid-course targets,in addition to constant orbital motion,the target or any structure on the target undergoes micro-motion dynamics,such as spin,precession and tumbling.The micro-motion characteristics o...For ballistic mid-course targets,in addition to constant orbital motion,the target or any structure on the target undergoes micro-motion dynamics,such as spin,precession and tumbling.The micro-motion characteristics of the ballistic mid-course targets were discussed.The target motion model and inverse synthetic aperture radar(ISAR) imaging model for this kind of targets were built.Then,the influence of micro-motion on ISAR imaging based on the established imaging model was presented.The computer simulation to get mid-course target echoes from static darkroom electromagnetic scattering data based on the established target motion model was realized.The imaging results of computer simulation show the validity of ISAR imaging analysis for micro-motion targets.展开更多
At present, the ballistic Target tracking has a higher demand in convergence rate and tracking precision of filter algorithm. In the paper, a filter algorithm was improved based on particle filter. The algorithm was c...At present, the ballistic Target tracking has a higher demand in convergence rate and tracking precision of filter algorithm. In the paper, a filter algorithm was improved based on particle filter. The algorithm was carried out from the aspects such as particle degradation and particle diversity lack. A novel ballistic coefficient parameter model was built, and was expanded to the state vector for filtering. Finally, the improved algorithm was simulated by MATLAB software. The simulation results show that the algorithm can obtain better convergence speed and tracking precision.展开更多
Target recognition is a significant part of a Ballistic Missile Defense System(BMDS).However,most existing ballistic target recognition methods overlook the impact of data representation on recognition outcomes.This p...Target recognition is a significant part of a Ballistic Missile Defense System(BMDS).However,most existing ballistic target recognition methods overlook the impact of data representation on recognition outcomes.This paper focuses on systematically investigating the influences of three novel data representations in the Range-Doppler(RD)domain.Initially,the Radar Cross Section(RCS)and micro-Doppler(m-D)characteristics of a cone-shaped ballistic target are analyzed.Then,three different data representations are proposed:RD data,RD sequence tensor data,and RD trajectory data.To accommodate various data inputs,deep-learning models are designed,including a two-Dimensional Residual Dense Network(2D RDN),a three-Dimensional Residual Dense Network-Gated Recurrent Unit(3D RDN-GRU),and a Dynamic Trajectory Recognition Network(DTRN).Finally,an Electromagnetic(EM)computation dataset is collected to verify the performances of the networks.A broad range of experimental results demonstrates the effectiveness of the proposed framework.Moreover,several key parameters of the proposed networks and datasets are extensively studied in this research.展开更多
文摘An infrared (IR) imaging simulation framework based on the strap-down platform is proposed for midcourse ballistic targets. It overcomes the shortcoming of the existing algorithms, which cannot simulate IR imaging from the entire midcourse process. The proposed framework includes three steps, target characteristic modeling, motion modeling, and imaging modeling. In imaging modeling, the staring focal plane is taken into account due to its wide employment. In order to obtain IR images of high fidelity, especially that the fluctuation of the target signal-to-noise ratio (SNR) is reasonably similar to the actual one, this paper proposes an improved IR imaging simulation method. The proposed method considers two critical factors of the pixel plane, occupy-empty ratio and defect elements, which affect the imaging of targets markedly but are neglected in previous work. Finally, the IR image sequence of high fidelity is obtained. And the correlative parameters of simulation can be set according to the given scene. Thus the generated images can satisfy the needs of algorithms validation for tracking and recognition.
基金Project(61360020102) supported by the National Basic Research Development Program of China
文摘For ballistic mid-course targets,in addition to constant orbital motion,the target or any structure on the target undergoes micro-motion dynamics,such as spin,precession and tumbling.The micro-motion characteristics of the ballistic mid-course targets were discussed.The target motion model and inverse synthetic aperture radar(ISAR) imaging model for this kind of targets were built.Then,the influence of micro-motion on ISAR imaging based on the established imaging model was presented.The computer simulation to get mid-course target echoes from static darkroom electromagnetic scattering data based on the established target motion model was realized.The imaging results of computer simulation show the validity of ISAR imaging analysis for micro-motion targets.
文摘At present, the ballistic Target tracking has a higher demand in convergence rate and tracking precision of filter algorithm. In the paper, a filter algorithm was improved based on particle filter. The algorithm was carried out from the aspects such as particle degradation and particle diversity lack. A novel ballistic coefficient parameter model was built, and was expanded to the state vector for filtering. Finally, the improved algorithm was simulated by MATLAB software. The simulation results show that the algorithm can obtain better convergence speed and tracking precision.
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China(No.2023-JCYB-491).
文摘Target recognition is a significant part of a Ballistic Missile Defense System(BMDS).However,most existing ballistic target recognition methods overlook the impact of data representation on recognition outcomes.This paper focuses on systematically investigating the influences of three novel data representations in the Range-Doppler(RD)domain.Initially,the Radar Cross Section(RCS)and micro-Doppler(m-D)characteristics of a cone-shaped ballistic target are analyzed.Then,three different data representations are proposed:RD data,RD sequence tensor data,and RD trajectory data.To accommodate various data inputs,deep-learning models are designed,including a two-Dimensional Residual Dense Network(2D RDN),a three-Dimensional Residual Dense Network-Gated Recurrent Unit(3D RDN-GRU),and a Dynamic Trajectory Recognition Network(DTRN).Finally,an Electromagnetic(EM)computation dataset is collected to verify the performances of the networks.A broad range of experimental results demonstrates the effectiveness of the proposed framework.Moreover,several key parameters of the proposed networks and datasets are extensively studied in this research.