There have been many really positive results co ncerning the weakly compact operators on Banach lattices in terms of their order structure as well as in many respects. This paper will survey some known recent result...There have been many really positive results co ncerning the weakly compact operators on Banach lattices in terms of their order structure as well as in many respects. This paper will survey some known recent results in this area.展开更多
Some characterizations of preregular operators between two Banach lattices are presented. Then several sufficient conditions for preregular operators being regular are given, and some related results are also obtained.
In 1934, Hardy, Littlewood and Polya introduced a rearrangement inequality:∑i=1,aib(m+1-i)≤∑i=1maibp(i)≤∑i=1,aibi,in which the real sequences {ai}i and {bi}i are in increasing order, and p(i) indicates a ...In 1934, Hardy, Littlewood and Polya introduced a rearrangement inequality:∑i=1,aib(m+1-i)≤∑i=1maibp(i)≤∑i=1,aibi,in which the real sequences {ai}i and {bi}i are in increasing order, and p(i) indicates a random permutation. We now consider a sequence in lp with 1 〈 p 〈 ∞, and a sequence in a Banach lattice X. Instead of normal multiplication, we consider the tensor product of lp and X. We show that in Wittstock injective tensor product, lp iX, and Fremlin projective tensor product, lp FX, the rearrangement inequality still exists.展开更多
This paper deals with a characterization for a Banach lattice in which the lattice operations are weakly sequentially continuous. As an application an elementary proof for an important result due to Wickstead is pro...This paper deals with a characterization for a Banach lattice in which the lattice operations are weakly sequentially continuous. As an application an elementary proof for an important result due to Wickstead is provided.展开更多
Hudzik and Kurc discussed some best approximation problems in Banach lattices by means of monotonicities. This paper deals with more general best approximation problems in Banach lattices. Existence, uniqueness, stabi...Hudzik and Kurc discussed some best approximation problems in Banach lattices by means of monotonicities. This paper deals with more general best approximation problems in Banach lattices. Existence, uniqueness, stability and continuity for such best approximation problems are discussed.展开更多
We present here that F(E,F), the space of all r-compact operators from E into F, is a generalised sublattice of L^r(E, F) for arbitary Banach lattices E and F, and that the characterization of the regular norm on ...We present here that F(E,F), the space of all r-compact operators from E into F, is a generalised sublattice of L^r(E, F) for arbitary Banach lattices E and F, and that the characterization of the regular norm on F(E, F) is order continuous. Some conditions for F(E, F) to be a KB-space or a band in .L(E, F) are also provided.展开更多
This article is committed to deal with measure of non-compactness of operators in Banach spaces.Firstly,the collection C(X)(consisting of all nonempty closed bounded convex sets of a Banach space X endowed with the ua...This article is committed to deal with measure of non-compactness of operators in Banach spaces.Firstly,the collection C(X)(consisting of all nonempty closed bounded convex sets of a Banach space X endowed with the uaual set addition and scaler multiplication)is a normed semigroup,and the mapping J from C(X)onto F(Ω)is a fully order-preserving positively linear surjective isometry,whereΩis the closed unit ball of X^*and F(Ω)the collection of all continuous and w^*-lower semicontinuous sublinear functions on X^*but restricted toΩ.Furthermore,both EC=JC-JC and EK=JK-JK are Banach lattices and EK is a lattice ideal of EC.The quotient space EC/EK is an abstract M space,hence,order isometric to a sublattice of C(K)for some compact Haudorspace K,and(FQJ)C which is a closed cone is contained in the positive cone of C(K),where Q:EC→EC/EK is the quotient mapping and F:EC/EK→C(K)is a corresponding order isometry.Finally,the representation of the measure of non-compactness of operators is given:Let BX be the closed unit ball of a Banach space X,thenμ(T)=μ(T(BX))=||(F QJ)T(BX)||C(K),∀T∈B(X).展开更多
It is proven that there exists a Dedekind complete Banach lattice E such that the linear spans/f (E) and IV (E) of positive compact and positive weakly compact operators on E fails to possess the Riesz separation ...It is proven that there exists a Dedekind complete Banach lattice E such that the linear spans/f (E) and IV (E) of positive compact and positive weakly compact operators on E fails to possess the Riesz separation property.展开更多
In this paper, we show that if an Asplund space X is either a Banach lattice or a quotient space of C(K), then it can be equivalently renormed so that the set of norm- attaining functionals contains an infinite dime...In this paper, we show that if an Asplund space X is either a Banach lattice or a quotient space of C(K), then it can be equivalently renormed so that the set of norm- attaining functionals contains an infinite dimensional closed subspace of X* if and only if X* contains an infinite dimensional reflexive subspace, which gives a partial answer to a question of Bandyopadhyay and Godefroy.展开更多
We develop a theory of downward sets for a class of normed ordered spaces. We study best approximation in a normed ordered space X by elements of downward sets, and give necessary and sufficient conditions for any ele...We develop a theory of downward sets for a class of normed ordered spaces. We study best approximation in a normed ordered space X by elements of downward sets, and give necessary and sufficient conditions for any element of best approximation by a closed downward subset of X. We also characterize strictly downward subsets of X, and prove that a downward subset of X is strictly downward if and only if each its boundary point is Chebyshev. The results obtained are used for examination of some Chebyshev pairs (W,x), where ∈ X and W is a closed downward subset of X展开更多
In Orlicz-Bochner sequence spaces endowed with Orlicz norm and Luxemburg norm, points of lower monotonicity, upper monotonicity, lower local uniform monotonicity and upper local uniform monotonicity are characterized.
In this paper, we show that any a-complete Banach lattice, with a σ-order semicontinuous but not σ-order continuous norm, contains an asymptotically isometric copy of l^∞. We also get that the Fenchel-Orlicz space ...In this paper, we show that any a-complete Banach lattice, with a σ-order semicontinuous but not σ-order continuous norm, contains an asymptotically isometric copy of l^∞. We also get that the Fenchel-Orlicz space with the Orlicz norm may not contain an asymptotically isometric copy of l^∞.展开更多
A method to construct strongly non regular order bounded operators from a classical Banach lattice C into any separable Banach lattice F without Dedekind σ completeness is presented in this paper. A r...A method to construct strongly non regular order bounded operators from a classical Banach lattice C into any separable Banach lattice F without Dedekind σ completeness is presented in this paper. A result concerning the order bounded norm and the regular norm is also contained.展开更多
Let E and F be Banach lattices. It is known that if every continuous linear operator from E into F is regular, then, under some mild assumptions on E or F, either E is lattice isomorphic to an AL-space or F is lattice...Let E and F be Banach lattices. It is known that if every continuous linear operator from E into F is regular, then, under some mild assumptions on E or F, either E is lattice isomorphic to an AL-space or F is lattice isomorphic to an AM-space. Here we present a characterization on an AL-space E such that every bounded linear operator from E into a Banach lattice is regular. A counterexample is also provided, which shows that the results are unexpected even if the domain is an AL-space or the range space is an AM-space.展开更多
We study summing multipliers from Banach spaces of analytic functions on the unit disc of the complex plane to the complex Banach sequence lattices. The domain spaces are abstract variants of the classical Hardy space...We study summing multipliers from Banach spaces of analytic functions on the unit disc of the complex plane to the complex Banach sequence lattices. The domain spaces are abstract variants of the classical Hardy spaces generated by the complex symmetric spaces. Applying interpolation methods, we prove the Hausdorff Young and Hardy-Littlewood type theorems. We show applications of these results to study summing multipliers from the Hardy-Orlicz spaces to the Orlicz sequence lattices. The obtained results extend the well-known results for the Hp spaces.展开更多
The concepts of conditional expectations, martingales and stopping times were extended to the Riesz space context by Kuo, Labuschagne and Watson (Discrete time stochastic processes on Riesz spaces, Indag. Math.,15(2...The concepts of conditional expectations, martingales and stopping times were extended to the Riesz space context by Kuo, Labuschagne and Watson (Discrete time stochastic processes on Riesz spaces, Indag. Math.,15(2004), 435-451). Here we extend the definition of an asymptotic martingale (amart) to the Riesz spaces context, and prove that Riesz space amarts can be decomposed into the sum of a martingale and an adapted sequence convergent to zero. Consequently an amart convergence theorem is deduced.展开更多
In this paper, the concepts of probabilistic normed Riesz space and probabilistic Banach lattice are introduced, and their basic properties are studied. In this context, some continuity and convergence theorems are pr...In this paper, the concepts of probabilistic normed Riesz space and probabilistic Banach lattice are introduced, and their basic properties are studied. In this context, some continuity and convergence theorems are proved.展开更多
文摘There have been many really positive results co ncerning the weakly compact operators on Banach lattices in terms of their order structure as well as in many respects. This paper will survey some known recent results in this area.
文摘Some characterizations of preregular operators between two Banach lattices are presented. Then several sufficient conditions for preregular operators being regular are given, and some related results are also obtained.
文摘In 1934, Hardy, Littlewood and Polya introduced a rearrangement inequality:∑i=1,aib(m+1-i)≤∑i=1maibp(i)≤∑i=1,aibi,in which the real sequences {ai}i and {bi}i are in increasing order, and p(i) indicates a random permutation. We now consider a sequence in lp with 1 〈 p 〈 ∞, and a sequence in a Banach lattice X. Instead of normal multiplication, we consider the tensor product of lp and X. We show that in Wittstock injective tensor product, lp iX, and Fremlin projective tensor product, lp FX, the rearrangement inequality still exists.
文摘This paper deals with a characterization for a Banach lattice in which the lattice operations are weakly sequentially continuous. As an application an elementary proof for an important result due to Wickstead is provided.
基金Supported by National Natural Science Foundation of China, Grant (10471032)
文摘Hudzik and Kurc discussed some best approximation problems in Banach lattices by means of monotonicities. This paper deals with more general best approximation problems in Banach lattices. Existence, uniqueness, stability and continuity for such best approximation problems are discussed.
文摘We present here that F(E,F), the space of all r-compact operators from E into F, is a generalised sublattice of L^r(E, F) for arbitary Banach lattices E and F, and that the characterization of the regular norm on F(E, F) is order continuous. Some conditions for F(E, F) to be a KB-space or a band in .L(E, F) are also provided.
基金The project supported in part by the National Natural Science Foundation of China(11801255)。
文摘This article is committed to deal with measure of non-compactness of operators in Banach spaces.Firstly,the collection C(X)(consisting of all nonempty closed bounded convex sets of a Banach space X endowed with the uaual set addition and scaler multiplication)is a normed semigroup,and the mapping J from C(X)onto F(Ω)is a fully order-preserving positively linear surjective isometry,whereΩis the closed unit ball of X^*and F(Ω)the collection of all continuous and w^*-lower semicontinuous sublinear functions on X^*but restricted toΩ.Furthermore,both EC=JC-JC and EK=JK-JK are Banach lattices and EK is a lattice ideal of EC.The quotient space EC/EK is an abstract M space,hence,order isometric to a sublattice of C(K)for some compact Haudorspace K,and(FQJ)C which is a closed cone is contained in the positive cone of C(K),where Q:EC→EC/EK is the quotient mapping and F:EC/EK→C(K)is a corresponding order isometry.Finally,the representation of the measure of non-compactness of operators is given:Let BX be the closed unit ball of a Banach space X,thenμ(T)=μ(T(BX))=||(F QJ)T(BX)||C(K),∀T∈B(X).
文摘It is proven that there exists a Dedekind complete Banach lattice E such that the linear spans/f (E) and IV (E) of positive compact and positive weakly compact operators on E fails to possess the Riesz separation property.
基金partially supported by NSFC,grant 11371296PhD Programs Foundation of MEC,Grant 20130121110032
文摘In this paper, we show that if an Asplund space X is either a Banach lattice or a quotient space of C(K), then it can be equivalently renormed so that the set of norm- attaining functionals contains an infinite dimensional closed subspace of X* if and only if X* contains an infinite dimensional reflexive subspace, which gives a partial answer to a question of Bandyopadhyay and Godefroy.
文摘We develop a theory of downward sets for a class of normed ordered spaces. We study best approximation in a normed ordered space X by elements of downward sets, and give necessary and sufficient conditions for any element of best approximation by a closed downward subset of X. We also characterize strictly downward subsets of X, and prove that a downward subset of X is strictly downward if and only if each its boundary point is Chebyshev. The results obtained are used for examination of some Chebyshev pairs (W,x), where ∈ X and W is a closed downward subset of X
文摘In Orlicz-Bochner sequence spaces endowed with Orlicz norm and Luxemburg norm, points of lower monotonicity, upper monotonicity, lower local uniform monotonicity and upper local uniform monotonicity are characterized.
基金the National Natural Science Foundation of China (Nos. 10571090 Foundation of Nankai University.
文摘In this paper, we show that any a-complete Banach lattice, with a σ-order semicontinuous but not σ-order continuous norm, contains an asymptotically isometric copy of l^∞. We also get that the Fenchel-Orlicz space with the Orlicz norm may not contain an asymptotically isometric copy of l^∞.
文摘A method to construct strongly non regular order bounded operators from a classical Banach lattice C into any separable Banach lattice F without Dedekind σ completeness is presented in this paper. A result concerning the order bounded norm and the regular norm is also contained.
文摘Let E and F be Banach lattices. It is known that if every continuous linear operator from E into F is regular, then, under some mild assumptions on E or F, either E is lattice isomorphic to an AL-space or F is lattice isomorphic to an AM-space. Here we present a characterization on an AL-space E such that every bounded linear operator from E into a Banach lattice is regular. A counterexample is also provided, which shows that the results are unexpected even if the domain is an AL-space or the range space is an AM-space.
基金Committee of Scientific Research,Poland,grant N201 385034
文摘We study summing multipliers from Banach spaces of analytic functions on the unit disc of the complex plane to the complex Banach sequence lattices. The domain spaces are abstract variants of the classical Hardy spaces generated by the complex symmetric spaces. Applying interpolation methods, we prove the Hausdorff Young and Hardy-Littlewood type theorems. We show applications of these results to study summing multipliers from the Hardy-Orlicz spaces to the Orlicz sequence lattices. The obtained results extend the well-known results for the Hp spaces.
基金the John Knopfmacher Centre for Applicable Analysis and Number Theory
文摘The concepts of conditional expectations, martingales and stopping times were extended to the Riesz space context by Kuo, Labuschagne and Watson (Discrete time stochastic processes on Riesz spaces, Indag. Math.,15(2004), 435-451). Here we extend the definition of an asymptotic martingale (amart) to the Riesz spaces context, and prove that Riesz space amarts can be decomposed into the sum of a martingale and an adapted sequence convergent to zero. Consequently an amart convergence theorem is deduced.
文摘In this paper, the concepts of probabilistic normed Riesz space and probabilistic Banach lattice are introduced, and their basic properties are studied. In this context, some continuity and convergence theorems are proved.