Some strong convergence theorems of explicit composite iteration scheme for nonexpansive semi-groups in the framework of Banach spaces are established. Results presented in the paper not only extend and improve the co...Some strong convergence theorems of explicit composite iteration scheme for nonexpansive semi-groups in the framework of Banach spaces are established. Results presented in the paper not only extend and improve the corresponding results of ShiojiTakahashi, Suzuki, Xu and Aleyner-Reich, but also give a partially affirmative answer to the open questions raised by Suzuki and Xu.展开更多
In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Su...In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.展开更多
Let E be a real Banach space and let A be an m-accretive operator with a zero. Define a sequence {x_n} as follows:x_n+1=α_nf(x_n)+(1-α_n)J_r_n x_n,where {α_n},{r_n} are sequences satisfying certain conditions,and J...Let E be a real Banach space and let A be an m-accretive operator with a zero. Define a sequence {x_n} as follows:x_n+1=α_nf(x_n)+(1-α_n)J_r_n x_n,where {α_n},{r_n} are sequences satisfying certain conditions,and J_r denotes the resolvent(I+rA)^(-1)for r>1.Strong convergence of the algorithm {x_n} is obtained provided that E either has a weakly continuous duality map or is uniformly smooth.展开更多
基金Project supported by the Natural Science Foundation of Sichuan Province of China(No.2005A132)
文摘Some strong convergence theorems of explicit composite iteration scheme for nonexpansive semi-groups in the framework of Banach spaces are established. Results presented in the paper not only extend and improve the corresponding results of ShiojiTakahashi, Suzuki, Xu and Aleyner-Reich, but also give a partially affirmative answer to the open questions raised by Suzuki and Xu.
文摘In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.
基金the National Natural Science Foundation of China (No. 10771050).
文摘Let E be a real Banach space and let A be an m-accretive operator with a zero. Define a sequence {x_n} as follows:x_n+1=α_nf(x_n)+(1-α_n)J_r_n x_n,where {α_n},{r_n} are sequences satisfying certain conditions,and J_r denotes the resolvent(I+rA)^(-1)for r>1.Strong convergence of the algorithm {x_n} is obtained provided that E either has a weakly continuous duality map or is uniformly smooth.