In this article thc concept of local conjugation of a C^1 mapping between two Banach manifolds is introduced. Thcn a rank theorem for nonlinear scmi-Fredholm operators between two Banach manifolds and a finite rank th...In this article thc concept of local conjugation of a C^1 mapping between two Banach manifolds is introduced. Thcn a rank theorem for nonlinear scmi-Fredholm operators between two Banach manifolds and a finite rank theorem are established in global analysis.展开更多
Sufficient conditions are given to assert that two C1-mappings share only one value in a connected compact Banach manifold modelled over Rn. The proof of the result, which is based upon continuation methods, is constr...Sufficient conditions are given to assert that two C1-mappings share only one value in a connected compact Banach manifold modelled over Rn. The proof of the result, which is based upon continuation methods, is constructive.展开更多
We characterise the positive cone of a real C^(*)-algebra geometrically.Given an open coneΩin a real Banach space V,with the closureΩ,we show thatΩis the interior of the positive cone of a unital real C^(*)-algebra...We characterise the positive cone of a real C^(*)-algebra geometrically.Given an open coneΩin a real Banach space V,with the closureΩ,we show thatΩis the interior of the positive cone of a unital real C^(*)-algebra if and only if it is a Finsler symmetric cone with an orientable extension,which is equivalent to the condition that V is,in an equivalent norm,the Hermitian part of a unital real C^(*)-algebra with the positive coneΩ.展开更多
We extend the classical Gibbs theory for smooth potentials to the geometric Gibbs theory for certain continuous potentials.We study the existence and uniqueness and the compatibility of geometric Gibbs measures associ...We extend the classical Gibbs theory for smooth potentials to the geometric Gibbs theory for certain continuous potentials.We study the existence and uniqueness and the compatibility of geometric Gibbs measures associated with these continuous potentials.We introduce a complex Banach manifold structure on the space of these continuous potentials as well as on the space of all geometric Gibbs measures.We prove that with this complex Banach manifold structure,the space is complete and,moreover,is the completion of the space of all smooth potentials as well as the space of all classical Gibbs measures.There is a maximum metric on the space,which is incomplete.We prove that the topology induced by the newly introduced complex Banach manifold structure and the topology induced by the maximal metric are the same.We prove that a geometric Gibbs measure is an equilibrium state,and the in mum of the metric entropy function on the space is zero.展开更多
Let H be a Hilbert space and A ■ B(H) be a C~*-subalgebra. This paper is devoted to studying the set gP of generalized projections in A from a differential geometric point of view, and mainly focuses on geodesic curv...Let H be a Hilbert space and A ■ B(H) be a C~*-subalgebra. This paper is devoted to studying the set gP of generalized projections in A from a differential geometric point of view, and mainly focuses on geodesic curves. We prove that the space gP is a C~∞ Banach submanifold of A, and a homogeneous reductive space under the action of Banach Lie group U_A of A. Moreover, we compute the geodesics of gP in a standard fashion, and prove that any generalized projection in a prescribed neighbourhood of p∈gP can be joined with p by a unique geodesic curve in gP.展开更多
基金This research was supported by the National Natural Science Foundation of China (10271053)the Doctoral Programme Foundation of the Ministry of Education of China
文摘In this article thc concept of local conjugation of a C^1 mapping between two Banach manifolds is introduced. Thcn a rank theorem for nonlinear scmi-Fredholm operators between two Banach manifolds and a finite rank theorem are established in global analysis.
基金partially supported by D.G.E.S.Pb96-1338-CO 2-01 and the Junta de Andalucia
文摘Sufficient conditions are given to assert that two C1-mappings share only one value in a connected compact Banach manifold modelled over Rn. The proof of the result, which is based upon continuation methods, is constructive.
基金supported by the Engineering and Physical Sciences Research Council,UK(Grant No.EP/R044228/1).
文摘We characterise the positive cone of a real C^(*)-algebra geometrically.Given an open coneΩin a real Banach space V,with the closureΩ,we show thatΩis the interior of the positive cone of a unital real C^(*)-algebra if and only if it is a Finsler symmetric cone with an orientable extension,which is equivalent to the condition that V is,in an equivalent norm,the Hermitian part of a unital real C^(*)-algebra with the positive coneΩ.
基金This work was supported by National Science Foundation of USA(Grant No.DMS-1747905)the Simons Foundation(Grant No.523341)+1 种基金Professional Sta Congress of the City University of New York Enhanced Award(Grant No.62777-0050)National Natural Science Foundation of China(Grant No.11571122).
文摘We extend the classical Gibbs theory for smooth potentials to the geometric Gibbs theory for certain continuous potentials.We study the existence and uniqueness and the compatibility of geometric Gibbs measures associated with these continuous potentials.We introduce a complex Banach manifold structure on the space of these continuous potentials as well as on the space of all geometric Gibbs measures.We prove that with this complex Banach manifold structure,the space is complete and,moreover,is the completion of the space of all smooth potentials as well as the space of all classical Gibbs measures.There is a maximum metric on the space,which is incomplete.We prove that the topology induced by the newly introduced complex Banach manifold structure and the topology induced by the maximal metric are the same.We prove that a geometric Gibbs measure is an equilibrium state,and the in mum of the metric entropy function on the space is zero.
基金supported by National Natural Science Foundation of China(Grant No.11371233)
文摘Let H be a Hilbert space and A ■ B(H) be a C~*-subalgebra. This paper is devoted to studying the set gP of generalized projections in A from a differential geometric point of view, and mainly focuses on geodesic curves. We prove that the space gP is a C~∞ Banach submanifold of A, and a homogeneous reductive space under the action of Banach Lie group U_A of A. Moreover, we compute the geodesics of gP in a standard fashion, and prove that any generalized projection in a prescribed neighbourhood of p∈gP can be joined with p by a unique geodesic curve in gP.