In this correspondence,we establish mean convergence theorems for the maximum of normed double sums of Banach space valued random elements.Most of the results pertain to random elements which are M-dependent.We expand...In this correspondence,we establish mean convergence theorems for the maximum of normed double sums of Banach space valued random elements.Most of the results pertain to random elements which are M-dependent.We expand and improve a number of particular cases in the literature on mean convergence of random elements in Banach spaces.One of the main contributions of the paper is to simplify and improve a recent result of Li,Presnell,and Rosalsky[Journal of Mathematical Inequalities,16,117–126(2022)].A new maximal inequality for double sums of M-dependent random elements is proved which may be of independent interest.The sharpness of the results is illustrated by four examples.展开更多
We mainly study the almost sure limiting behavior of weighted sums of the form ∑ni=1 aiXi/bn , where {Xn, n ≥ 1} is an arbitrary Banach space valued random element sequence or Banach space valued martingale differen...We mainly study the almost sure limiting behavior of weighted sums of the form ∑ni=1 aiXi/bn , where {Xn, n ≥ 1} is an arbitrary Banach space valued random element sequence or Banach space valued martingale difference sequence and {an, n ≥ 1} and {bn,n ≥ 1} are two sequences of positive constants. Some new strong laws of large numbers for such weighted sums are proved under mild conditions.展开更多
For a blockwise martingale difference sequence of random elements {Vn, n ≥ 1} taking values in a real separable martingale type p (1 ≤ p ≤ 2) Banach space, conditions are provided for strong laws of large numbers...For a blockwise martingale difference sequence of random elements {Vn, n ≥ 1} taking values in a real separable martingale type p (1 ≤ p ≤ 2) Banach space, conditions are provided for strong laws of large numbers of the form limn→∞ Vi/gn = 0 almost surely to hold where the constants gn ↑∞. A result of Hall and Heyde [Martingale Limit Theory and Its Application, Academic Press, New York, 1980, p. 36] which was obtained for sequences of random variables is extended to a martingale type p (1〈 p ≤2) Banach space setting and to hold with a Marcinkiewicz-Zygmund type normalization. Illustrative examples and counterexamples are provided.展开更多
文摘In this correspondence,we establish mean convergence theorems for the maximum of normed double sums of Banach space valued random elements.Most of the results pertain to random elements which are M-dependent.We expand and improve a number of particular cases in the literature on mean convergence of random elements in Banach spaces.One of the main contributions of the paper is to simplify and improve a recent result of Li,Presnell,and Rosalsky[Journal of Mathematical Inequalities,16,117–126(2022)].A new maximal inequality for double sums of M-dependent random elements is proved which may be of independent interest.The sharpness of the results is illustrated by four examples.
基金Supported by the National Natural Science Foundationof China (10671149)
文摘We mainly study the almost sure limiting behavior of weighted sums of the form ∑ni=1 aiXi/bn , where {Xn, n ≥ 1} is an arbitrary Banach space valued random element sequence or Banach space valued martingale difference sequence and {an, n ≥ 1} and {bn,n ≥ 1} are two sequences of positive constants. Some new strong laws of large numbers for such weighted sums are proved under mild conditions.
基金supported in part by the National Foundation for Science Technology Development,Vietnam (NAFOSTED) (Grant No. 101.02.32.09)
文摘For a blockwise martingale difference sequence of random elements {Vn, n ≥ 1} taking values in a real separable martingale type p (1 ≤ p ≤ 2) Banach space, conditions are provided for strong laws of large numbers of the form limn→∞ Vi/gn = 0 almost surely to hold where the constants gn ↑∞. A result of Hall and Heyde [Martingale Limit Theory and Its Application, Academic Press, New York, 1980, p. 36] which was obtained for sequences of random variables is extended to a martingale type p (1〈 p ≤2) Banach space setting and to hold with a Marcinkiewicz-Zygmund type normalization. Illustrative examples and counterexamples are provided.