Let E be a separable Banach space and μ be a probability measure on E. We consider Dirichlet forms εon L2(E,m).A special compactification MГ of E is studied in order to give a simple sufficient condition which ensu...Let E be a separable Banach space and μ be a probability measure on E. We consider Dirichlet forms εon L2(E,m).A special compactification MГ of E is studied in order to give a simple sufficient condition which ensures that the complement MГ-E has zero ε-capacity.As an application we prove that the classical Dirichlet forms introduced in Albeverio-Rockner[1]satisfy this sufficient condition.展开更多
文摘Let E be a separable Banach space and μ be a probability measure on E. We consider Dirichlet forms εon L2(E,m).A special compactification MГ of E is studied in order to give a simple sufficient condition which ensures that the complement MГ-E has zero ε-capacity.As an application we prove that the classical Dirichlet forms introduced in Albeverio-Rockner[1]satisfy this sufficient condition.