文章主要研究Banach代数上反三角算子矩阵的Hirano逆.假设a∈A^(H),b∈A^(sD).如果b^(D)a=0,bab^(π)=0,证明了[a 1 b 0]具有Hirano逆,进而研究了反三角算子矩阵在弱交换条件下的Hirano逆.由此获得了新的可以分解为三幂等元与幂零元和...文章主要研究Banach代数上反三角算子矩阵的Hirano逆.假设a∈A^(H),b∈A^(sD).如果b^(D)a=0,bab^(π)=0,证明了[a 1 b 0]具有Hirano逆,进而研究了反三角算子矩阵在弱交换条件下的Hirano逆.由此获得了新的可以分解为三幂等元与幂零元和的算子矩阵.展开更多
基金supported by NSFC(Nos.11571247,11301312)the Science Technology Plan Project of Datong City(No.2018151)the Doctoral Scientific Research Foundation of Shanxi Datong University(No.2015-B-09)