The analysis of the density of states for electrons in single quantum well, the conduction band nonparabolicity take is account. It is shown that the degree of conduction band nonparabolicity pronounces depending on t...The analysis of the density of states for electrons in single quantum well, the conduction band nonparabolicity take is account. It is shown that the degree of conduction band nonparabolicity pronounces depending on the energy density of states. With increasing temperature, a step change in the density of states smoothes and at high temperatures is completely blurred. Nonparabolicity dispersion law manifests itself in a wide range of temperatures. Calculations are carried out for the example of the quantum wells in InAs and InSb.展开更多
An investigation of the optical properties of a GaAs spherical quantum dot which is located at the center of a Ga1-xAlx As cylindrical nano-wire has been performed in the presence of an external electric field. The ba...An investigation of the optical properties of a GaAs spherical quantum dot which is located at the center of a Ga1-xAlx As cylindrical nano-wire has been performed in the presence of an external electric field. The band nonparabolieity effect is also considered using the energy dependent effective mass approximation. The energy eigenvalues and corresponding wave functions are calculated by finite difference approximation and the reliability of calculated wave functions is checked by computing orthogonality. Using computed energy eigenvalues and wave functions, the linear, third-order nonlinear and total optical absorption coefficients and refractive index changes are examined in detail. It is found that (i) Presence of electric field causes both blue and red shifts in absorption spectrum; (ii) The absorption coefficients shift toward lower energies by taking into account the conduction band nonparabolicity; (iii) For large values of electric field the effect of conduction band nonparabolieity is less dominant and parabolic band is estimated correctly; (iv) In the presence of electric field and conduction band nonparabolicity the nonlinear term of absorption coefficient rapidly increases by increasing incident optical intensity. In other words, the saturation in optical spectrum occurs at lower incident optical intensities.展开更多
文摘The analysis of the density of states for electrons in single quantum well, the conduction band nonparabolicity take is account. It is shown that the degree of conduction band nonparabolicity pronounces depending on the energy density of states. With increasing temperature, a step change in the density of states smoothes and at high temperatures is completely blurred. Nonparabolicity dispersion law manifests itself in a wide range of temperatures. Calculations are carried out for the example of the quantum wells in InAs and InSb.
文摘An investigation of the optical properties of a GaAs spherical quantum dot which is located at the center of a Ga1-xAlx As cylindrical nano-wire has been performed in the presence of an external electric field. The band nonparabolieity effect is also considered using the energy dependent effective mass approximation. The energy eigenvalues and corresponding wave functions are calculated by finite difference approximation and the reliability of calculated wave functions is checked by computing orthogonality. Using computed energy eigenvalues and wave functions, the linear, third-order nonlinear and total optical absorption coefficients and refractive index changes are examined in detail. It is found that (i) Presence of electric field causes both blue and red shifts in absorption spectrum; (ii) The absorption coefficients shift toward lower energies by taking into account the conduction band nonparabolicity; (iii) For large values of electric field the effect of conduction band nonparabolieity is less dominant and parabolic band is estimated correctly; (iv) In the presence of electric field and conduction band nonparabolicity the nonlinear term of absorption coefficient rapidly increases by increasing incident optical intensity. In other words, the saturation in optical spectrum occurs at lower incident optical intensities.