Let f be a nonconstant entire function; let k ≥ 2 be a positive integer; and let a be a nonzero complex number. If f(z) = a→f′(z) = a, and f′(z) = a →f^(k)(z) = a, then either f = Ce^λz + a or f = Ce^...Let f be a nonconstant entire function; let k ≥ 2 be a positive integer; and let a be a nonzero complex number. If f(z) = a→f′(z) = a, and f′(z) = a →f^(k)(z) = a, then either f = Ce^λz + a or f = Ce^λz + a(λ - 1)/)λ, where C and ), are nonzero constants with λ^k-1 = 1. The proof is based on the Wiman-Vlairon theory and the theory of normal families in an essential way.展开更多
In the paper,we prove the main result:Let k(≥2)be an integer,and a,b and c be three distinct complex numbers.Let F be a family of functions holomorphic in a domain D in complex plane,all of whose zeros have multiplic...In the paper,we prove the main result:Let k(≥2)be an integer,and a,b and c be three distinct complex numbers.Let F be a family of functions holomorphic in a domain D in complex plane,all of whose zeros have multiplicity at least k.Suppose that for each f∈F,f(z)and f(k)(z)share the set{a,b,c}.Then F is a normal family in D.展开更多
In this paper, we shall utilize Nevanlinna value distribution theory and normality theory to study the solvability of a certain type of functional-differential equations. We also consider the solutions of some nonline...In this paper, we shall utilize Nevanlinna value distribution theory and normality theory to study the solvability of a certain type of functional-differential equations. We also consider the solutions of some nonlinear differential equations.展开更多
In this paper, we use Pang-Zalcman lemma to investigate the normal family of meromorphic functions concerning shared analytic function, which improves some earlier related results.
基金the NNSF of China(Grant No.10471065)the NSF of Education Department of Jiangsu Province(Grant No.04KJD110001)+1 种基金the SRF for ROCS,SEMthe Presidential Foundation of South China Agricultural University
文摘Let f be a nonconstant entire function; let k ≥ 2 be a positive integer; and let a be a nonzero complex number. If f(z) = a→f′(z) = a, and f′(z) = a →f^(k)(z) = a, then either f = Ce^λz + a or f = Ce^λz + a(λ - 1)/)λ, where C and ), are nonzero constants with λ^k-1 = 1. The proof is based on the Wiman-Vlairon theory and the theory of normal families in an essential way.
基金Supported by the NSF of China(10771220)Supported by the Doctorial Point Fund of National Education Ministry of China(200810780002)
文摘In the paper,we prove the main result:Let k(≥2)be an integer,and a,b and c be three distinct complex numbers.Let F be a family of functions holomorphic in a domain D in complex plane,all of whose zeros have multiplicity at least k.Suppose that for each f∈F,f(z)and f(k)(z)share the set{a,b,c}.Then F is a normal family in D.
基金Supported by the National Natural Science Foundation of China (11171184)the Scientific ResearchFoundation of CAUC,China (2011QD10X)
文摘In this paper, we shall utilize Nevanlinna value distribution theory and normality theory to study the solvability of a certain type of functional-differential equations. We also consider the solutions of some nonlinear differential equations.
文摘In this paper, we use Pang-Zalcman lemma to investigate the normal family of meromorphic functions concerning shared analytic function, which improves some earlier related results.