期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
New Curvature-Compensated CMOS Bandgap Voltage Reference 被引量:4
1
作者 Lu Shen Ning Ning Qi Yu Yan Luo Chun-Sheng Li 《Journal of Electronic Science and Technology of China》 2007年第4期370-373,共4页
A novel curvature-compensated CMOS bandgap voltage reference is presented. The reference utilizes two first order temperature compensations generated from the nonlinearity of the finite current gain β of vertical pnp... A novel curvature-compensated CMOS bandgap voltage reference is presented. The reference utilizes two first order temperature compensations generated from the nonlinearity of the finite current gain β of vertical pnp bipolar transistor. The proposed circuit, designed in a standard 0.18 μm CMOS process, achieves a good temperature coefficient of 2.44 ppm/℃ with temperature range from --40℃ to 85 ℃, and about 4 mV supply voltage variation in the range from 1.4 V to 2.4 V. With a 1.8 V supply voltage, the power supply rejection ratio is -56dB at 10MHz. 展开更多
关键词 bandgap voltage reference CMOS curvature-compensation technique finite current gain.
下载PDF
A Piecewise-Linear Compensated Bandgap Reference 被引量:5
2
作者 王红义 来新泉 +1 位作者 李玉山 李先锐 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2004年第7期771-777,共7页
A bandgap voltage reference is presented with a piecewise linear compensating circuit in order to reduce the temperature coefficient.The basic principle is to divide the whole operating temperature range into some su... A bandgap voltage reference is presented with a piecewise linear compensating circuit in order to reduce the temperature coefficient.The basic principle is to divide the whole operating temperature range into some sub ranges.At different temperature sub ranges the bandgap reference can be compensated by different linear functions.Since the temperature sub range is much narrower than the whole range,the compensation error can be reduced significantly.Theoretically,the precision can be improved unlimitedly if the sub ranges are narrow enough.In the given example,with only three temperature sub ranges,the temperature coefficient of a conventional bandgap reference drops from 1 5×10 -5 /℃ to 2×10 -6 /℃ over the -40℃ to 120℃ temperature range. 展开更多
关键词 bandgap voltage reference piecewise linearly compensated curvature corrected temperature coefficient reference circuits
下载PDF
Curvature Compensated CMOS Bandgap Reference with Novel Process Variation Calibration Technique 被引量:1
3
作者 Jiancheng Zhang Mao Ye +1 位作者 Yiqiang Zhao Gongyuan Zhao 《Journal of Beijing Institute of Technology》 EI CAS 2018年第2期182-188,共7页
A lowtemperature coefficient( TC) bandgap reference( BGR) with novel process variation calibration technique is proposed in this paper. This proposed calibration technique compensating both TC and output value of ... A lowtemperature coefficient( TC) bandgap reference( BGR) with novel process variation calibration technique is proposed in this paper. This proposed calibration technique compensating both TC and output value of BGR achieves fine adjustment step towards the reference voltage,while keeping optimal TC by utilizing large resistance to help layout match. The high-order curvature compensation realized by poly and p-diffusion resistors is introduced into the design to guarantee the temperature characteristic. Implemented in 180 nm technology,the proposed BGR has been simulated to have a power supply rejection ratio( PSRR) of 91 dB@100 Hz. The calibration technique covers output voltage scope of 0. 49 V-0. 56 Vwith TC of 9. 45 × 10^(-6)/℃-9. 56 × 10^(-6)/℃ over the temperature range of-40 ℃-120 ℃. The designed BGR provides a reference voltage of 500 mV,with measured TC of 10. 1 × 10^(-6)/℃. 展开更多
关键词 bandgap reference voltage process variation resistance-trimming current-calibration curvature compensation temperature coefficient
下载PDF
IC Implementation of a Programmable CMOS Voltage Reference 被引量:3
4
作者 张科 郭健民 +1 位作者 孔明 李文宏 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2007年第1期36-41,共6页
A new approach for the design and implementation of a programmable voltage reference based on an improved current mode bandgap voltage reference is presented. The circuit is simulated and fabricated with Chartered 0.... A new approach for the design and implementation of a programmable voltage reference based on an improved current mode bandgap voltage reference is presented. The circuit is simulated and fabricated with Chartered 0. 35μm mixed-signal technology. Measurements demonstrate that the temperature coefficient is ± 36. 3ppm/℃ from 0 to 100℃ when the VID inputs are 11110.As the supply voltage is varied from 2.7 to 5V, the voltage reference varies by about 5mV. The maximum glitch of the transient response is about 20mV at 125kHz. Depending on the state of the five VID inputs,an output voltage between 1.1 and 1.85V is programmed in increments of 25mV. 展开更多
关键词 voltage regulation modules current mode bandgap voltage reference temperature coefficient power supply rejection ratio programmable voltage reference
下载PDF
A Super Performance Bandgap Voltage Reference with Adjustable Output for DC-DC Converter 被引量:6
5
作者 YU Hua ZOU Xue-cheng CHEN Chao-yang 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2006年第1期75-78,共4页
This paper presents a super performance bandgap voltage reference for DC-DC converter with adjustable output. it generates a wide range of voltage reference ranging from sub- 1V to 1,221 7 V and has a low temperature ... This paper presents a super performance bandgap voltage reference for DC-DC converter with adjustable output. it generates a wide range of voltage reference ranging from sub- 1V to 1,221 7 V and has a low temperature coefficient of 2.3 × 10 ^5/K over the temperature variation using the current feedback and resistive subdivision. In addition, the power supply rejection ration of the proposed bandgap voltage reference is 78 dB. When supply voltage varies from 2.5 V to 6 V, output VREF is 1,221 685±0.055 mV. 展开更多
关键词 bandgap voltage reference adjustable output DC-DC converter temperature coefficient PSRR
原文传递
Negative voltage bandgap reference with multilevel curvature compensation technique 被引量:1
6
作者 刘溪 刘倩 +2 位作者 靳哓诗 赵永瑞 李宗昊 《Journal of Semiconductors》 EI CAS CSCD 2016年第5期114-120,共7页
A novel high-order curvature compensation negative voltage bandgap reference (NBGR) based on a novel multilevel compensation technique is introduced. Employing an exponential curvature compensation (ECC) term with... A novel high-order curvature compensation negative voltage bandgap reference (NBGR) based on a novel multilevel compensation technique is introduced. Employing an exponential curvature compensation (ECC) term with many high order terms in itself, in a lower temperature range (TR) and a multilevel curvature compen- sation (MLCC) term in a higher TR, a flattened and better effect of curvature compensation over the TR of 165℃ (--40 to 125 ℃) is realised. The MLCC circuit adds two convex curves by using two sub-threshold operated NMOS. The proposed NBGR implemented in the Central Semiconductor Manufacturing Corporation (CSMC) 0.5 #m BCD technology demonstrates an accurate voltage of-1.183 V with a temperature coefficient (TC) as low as 2.45 ppm/℃over the TR of 165℃ at a -5.0 V power supply; the line regulation is 3 mV/V from a -5 to -2 V supply voltage. The active area of the presented NBGR is 370×180 μm2. 展开更多
关键词 negative voltage bandgap reference ECC multilevel curvature-compensation TC line regulation
原文传递
Novel high-PSRR high-order curvature-compensated bandgap voltage reference 被引量:1
7
作者 Zhou Qianneng Yan Kai +3 位作者 Lin Jinzhao Pang Yu Li Guoquan Luo Wei 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2016年第2期66-72,96,共8页
This paper proposes a novel high-power supply rejection ratio(high-PSRR) high-order curvature-compensated CMOS bandgap voltage reference(BGR) in SMIC 0.18 μm CMOS process. Three kinds of current are added to a co... This paper proposes a novel high-power supply rejection ratio(high-PSRR) high-order curvature-compensated CMOS bandgap voltage reference(BGR) in SMIC 0.18 μm CMOS process. Three kinds of current are added to a conventional BGR in order to improve the temperature drift within wider temperature range, which include a piecewise-curvaturecorrected current in high temperature range, a piecewise-curvature-corrected current in low temperature range and a proportional-to-absolute-temperature T^(1.5) current. The high-PSRR characteristic of the proposed BGR is achieved by adopting the technique of pre-regulator. Simulation results shows that the temperature coefficient of the proposed BGR with pre-regulator is 8.42x10^(-6)′ /℃ from - 55 ℃ to 125 ℃ with a 1.8 V power supply voltage. The proposed BGR with pre-regulator achieves PSRR of - 123.51 dB, - 123.52 dB, - 88.5 dB and - 50.23 dB at 1 Hz, 100 Hz, 100 kHz and 1 MHz respectively. 展开更多
关键词 bandgap voltage reference pre-regulator temperature coefficient power supply rejection ratio
原文传递
A high precision high PSRR bandgap reference with thermal hysteresis protection 被引量:3
8
作者 杨银堂 李娅妮 朱樟明 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2010年第9期113-117,共5页
To meet the accuracy requirement for the bandgap voltage reference by the increasing data conversion precision of integrated circuits,a high-order curvature-compensated bandgap voltage reference is presented employing... To meet the accuracy requirement for the bandgap voltage reference by the increasing data conversion precision of integrated circuits,a high-order curvature-compensated bandgap voltage reference is presented employing the characteristic of bipolar transistor current gain exponentially changing with temperature variations.In addition,an over-temperature protection circuit with a thermal hysteresis function to prevent thermal oscillation is proposed.Based on the CSMC 0.5μm 20 V BCD process,the designed circuit is implemented;the active die area is 0.17×0.20 mm;. Simulation and testing results show that the temperature coefficient is 13.7 ppm/K with temperature ranging from -40 to 150℃,the power supply rejection ratio is -98.2 dB,the line regulation is 0.3 mV/V,and the power consumption is only 0.38 mW.The proposed bandgap voltage reference has good characteristics such as small area,low power consumption, good temperature stability,high power supply rejection ratio,as well as low line regulation.This circuit can effectively prevent thermal oscillation and is suitable for on-chip voltage reference in high precision analog,digital and mixed systems. 展开更多
关键词 bandgap voltage reference curvature-compensated power supply rejection ratio over-temperature protection BCD process
原文传递
A 1.2-V 19.2-mW 10-bit 30-MS/s pipelined ADC in 0.13-μm CMOS
9
作者 张章 袁宇丹 +2 位作者 郭亚炜 程旭 曾晓洋 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2010年第9期134-140,共7页
A 10-bit 30-MS/s pipelined analog-to-digital converter(ADC) is presented.For the sake of lower power and area,the pipelined stages are scaled in current and area,and op amps are shared between the successive stages.... A 10-bit 30-MS/s pipelined analog-to-digital converter(ADC) is presented.For the sake of lower power and area,the pipelined stages are scaled in current and area,and op amps are shared between the successive stages. The ADC is realized in the 0.13-μm 1-poly 8-copper mixed signal CMOS process operating at 1.2-V supply voltage. Design approaches are discussed to overcome the challenges associated with this choice of process and supply voltage, such as limited dynamic range,poor analog characteristic devices,the limited linearity of analog switches and the embedded sub-1-V bandgap voltage reference.Measured results show that the ADC achieves 55.1-dB signal-to-noise and distortion ratio,67.5-dB spurious free dynamic range and 19.2-mW power under conditions of 30 MSPS and 10.7- MHz input signal.The FoM is 0.33 pJ/step.The peak integral and differential nonlinearities are 1.13 LSB and 0.77 LSB,respectively.The ADC core area is 0.94 mm^2. 展开更多
关键词 analog-to-digital converter PIPELINED sampling capacitor two-stage op amp compensation linearity of analog switch sub-1-V bandgap voltage reference
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部