A high integrated monolithic IC, with functions of clock recovery, data decision, and 1 : 4 demultiplexer,is implemented in 0.25μm CMOS process for 2.5Gb/s fiber-optic communications. The recovered and frequency div...A high integrated monolithic IC, with functions of clock recovery, data decision, and 1 : 4 demultiplexer,is implemented in 0.25μm CMOS process for 2.5Gb/s fiber-optic communications. The recovered and frequency divided 625MHz clock has a phase noise of -106.26dBc/Hz at 100kHz offset in response to a 2.5Gb/s PRBS input data (2^31-1). The 2.5Gb/s PRBS data are demultiplexed to four 625Mb/s data. The 0.97mm× 0.97mm IC consumes 550mW under a single 3.3V power supply (not including output buffers).展开更多
Based on the devised system-level design methodology, a 2.5-Gb/s monolithic bang-bang phase-locked clock and data recovery (CDR) circuit has been designed and fabricated in SMIC's 0.18-μm CMOS technology. The Pott...Based on the devised system-level design methodology, a 2.5-Gb/s monolithic bang-bang phase-locked clock and data recovery (CDR) circuit has been designed and fabricated in SMIC's 0.18-μm CMOS technology. The Pottbiicker phase frequency detector and a differential 4-stage inductorless ring VCO are adopted, where an additional current source is added to the VCO cell to improve the linearity of the VCO characteristic. The CDR has an active area of 340 × 440μm2, and consumes a power of only about 60 mW from a 1.8 V supply voltage, with an input sensitivity of less than 25 mV, and an output single-ended swing of more than 300 mV. It has a pull-in range of 800 MHz, and a phase noise of-111.54 dBc/Hz at 10 kHz offset. The CDR works reliably at any input data rate between 1.8 Gb/s and 2.6 Gb/s without any need for reference clock, off-chip tuning, or external components.展开更多
A behavior model for the receiver of the Ethernet passive optical network(EPON) is presented. The model consists of a fiber, a photodetector, a transimpedance amplifier (TIA) followed by a limiting amplifier and a...A behavior model for the receiver of the Ethernet passive optical network(EPON) is presented. The model consists of a fiber, a photodetector, a transimpedance amplifier (TIA) followed by a limiting amplifier and a clock and data recovery' circuit (CDR). Each sub-model is constructed based on the architecture of a circuit. The noise and jitter in each block such as shot noise, thermal noise, deterministic and random jitter are also considered. The performance of the whole receiver can be evaluated by the simulation of the behavior model, which is faster than the ordinary circuit model and more accurate than the analytical model. The whole model is implemented with C ++ and simulated in Microsoft Visual C ++ 6. 0. Using the Monte Carlo method, the EPON receiver is simulated. The simulation results show a good agreement with experimental ones.展开更多
文摘A high integrated monolithic IC, with functions of clock recovery, data decision, and 1 : 4 demultiplexer,is implemented in 0.25μm CMOS process for 2.5Gb/s fiber-optic communications. The recovered and frequency divided 625MHz clock has a phase noise of -106.26dBc/Hz at 100kHz offset in response to a 2.5Gb/s PRBS input data (2^31-1). The 2.5Gb/s PRBS data are demultiplexed to four 625Mb/s data. The 0.97mm× 0.97mm IC consumes 550mW under a single 3.3V power supply (not including output buffers).
基金supported by the National High Technology Research and Development Program of China(No.2007AA01Z2a5)the National Natural Science Foundation of China(No.60806027).
文摘Based on the devised system-level design methodology, a 2.5-Gb/s monolithic bang-bang phase-locked clock and data recovery (CDR) circuit has been designed and fabricated in SMIC's 0.18-μm CMOS technology. The Pottbiicker phase frequency detector and a differential 4-stage inductorless ring VCO are adopted, where an additional current source is added to the VCO cell to improve the linearity of the VCO characteristic. The CDR has an active area of 340 × 440μm2, and consumes a power of only about 60 mW from a 1.8 V supply voltage, with an input sensitivity of less than 25 mV, and an output single-ended swing of more than 300 mV. It has a pull-in range of 800 MHz, and a phase noise of-111.54 dBc/Hz at 10 kHz offset. The CDR works reliably at any input data rate between 1.8 Gb/s and 2.6 Gb/s without any need for reference clock, off-chip tuning, or external components.
文摘A behavior model for the receiver of the Ethernet passive optical network(EPON) is presented. The model consists of a fiber, a photodetector, a transimpedance amplifier (TIA) followed by a limiting amplifier and a clock and data recovery' circuit (CDR). Each sub-model is constructed based on the architecture of a circuit. The noise and jitter in each block such as shot noise, thermal noise, deterministic and random jitter are also considered. The performance of the whole receiver can be evaluated by the simulation of the behavior model, which is faster than the ordinary circuit model and more accurate than the analytical model. The whole model is implemented with C ++ and simulated in Microsoft Visual C ++ 6. 0. Using the Monte Carlo method, the EPON receiver is simulated. The simulation results show a good agreement with experimental ones.