The relationships between the tropical Indian Ocean basin (IOB)/dipole (IOD) mode of SST anomalies (SSTAs) and ENSO phase transition during the following year are examined and compared in observations for the pe...The relationships between the tropical Indian Ocean basin (IOB)/dipole (IOD) mode of SST anomalies (SSTAs) and ENSO phase transition during the following year are examined and compared in observations for the period 1958-2008. Both partial correlation analysis and composite analysis show that both the positive (negative) phase of the lOB and IOD (independent of each other) in the tropical Indian Ocean are possible contributors to the E1 Nino (La Nifia) decay and phase transition to La Nifia (El Nifio) about one year later. However, the influence on ENSO transition induced by the IOB is stronger than that by the IOD. The SSTAs in the equatorial central-eastern Pacific in the coming year originate from subsurface temperature anomalies in the equatorial eastern Indian and western Pacific Ocean, induced by the IOB and IOD through eastward and upward propagation to meet the surface. During this process, however the contribution of the oceanic channel process between the tropical Indian and Pacific oceans is totally different for the IOB and IOD. For the IOD, the influence of the Indonesian Throughflow transport anomalies could propagate to the eastern Pacific to induce the ENSO transition. For the IOB, the impact of the oceanic channel stays and disappears in the western Pacific without propagation to the eastern Pacific.展开更多
On the basis of exhaustive researches on the facies sequences and depositlonal evolutionary process of various depositional systems, the genetic stratigraphic framework of the extensional rifted oceanic basin, which h...On the basis of exhaustive researches on the facies sequences and depositlonal evolutionary process of various depositional systems, the genetic stratigraphic framework of the extensional rifted oceanic basin, which has undergone strong structural destruction, has been reconstructed by means of dynamic genetic stratigraphic analysis. Five depositional episodes have been distinguished from various isochronous stratigraphic boundaries and stratigraphic sequences with the three-dimensional structure of each depositional episode analysed in detail. The tectonic paleogeographic environment corresponding to different stages of each depositional episode has been reconstructed for individual depositional system tracts. And the evolution history of this rifted basin has been divided into four stages' initial rifting and oceanization of continental crust, stretching and spreading of the basin, subduction and basin differentiation, and convergence and collision. A NNE-trending intracontinental soft collision suture was left after the closing of the basin.展开更多
A year-round halocline is a particular hydrographic structure in the upperArctic Ocean. On the basis of an analysis of the hydrographic data collected in the Arctic Ocean, itis found that a double-halocline structure ...A year-round halocline is a particular hydrographic structure in the upperArctic Ocean. On the basis of an analysis of the hydrographic data collected in the Arctic Ocean, itis found that a double-halocline structure exists in the upper layer of the southern Canada Basin,which is absolutely different from the Cold Halocline Layer (CHL) in the Eurasian Basin. ThePacific-origin water is the primary factor in the formation of the double-halocline structure. Theupper halocline lies between the summer modification and the winter modification of thePacific-origin water while the lower halocline results from the Pacific-origin water overlying uponthe Atlantic-origin water. Both haloclines are all the year-round although seasonal and interannualvariations have been detected in the historical data.展开更多
The Central Indian Ocean Basin (CIOB) basalts are plagioclase-rich, while olivine and pyroxene are very few. The analyses of 41 samples reveal high FeOT (~10-18 wt%) and TiO 2 (~1.4-2.7 wt%) indicating a ferro...The Central Indian Ocean Basin (CIOB) basalts are plagioclase-rich, while olivine and pyroxene are very few. The analyses of 41 samples reveal high FeOT (~10-18 wt%) and TiO 2 (~1.4-2.7 wt%) indicating a ferrobasaltic composition. The basalts have high incompatible elements (Zr 63-228 ppm; Nb ~1-5 ppm; Ba ~15-78 ppm; La ~3-16 ppm), a similar U/Pb (0.02-0.4) ratio as the normal midoceanic basalt (0.16±0.07) but the Ba/Nb (12.5-53) ratio is much larger than that of the normal midoceanic ridge basalt (~5.7) and Primitive Mantle (9.56). Interestingly almost all of the basalts have a significant negative Eu anomaly (Eu/Eu*=0.78-1.00) that may have been a result of the removal of feldspar and pyroxene during crystal fractionation. These compositional variations suggest that the basalts were derived through fractional crystallization together with low partial melting of a shallow seated magma.展开更多
About 400 pumice clasts collected from the Central Indian Ocean Basin(CIOB)were studied for their morphology and were classified based on their shape and size.A majority of the samples range between1 cm and 36 cm an...About 400 pumice clasts collected from the Central Indian Ocean Basin(CIOB)were studied for their morphology and were classified based on their shape and size.A majority of the samples range between1 cm and 36 cm and in the Zinggs shape diagram plot in the equant and oblate fields.The Corey Shape Factor for most of the samples is close to 0.7,which is common for volcaniclastic material. The physical properties such as density,specific gravity,void ratio,porosity,moisture content and degree of saturation,were determined for 30 pumice samples.Density varies from 0.21 to 0.74 g/cm^3 specific gravity 1.84 to 3.27,void ratio 2.21 to 10.67,porosity 67%to 91%,moisture content during sinking 0.44 to 2.35 and degree of saturation varies from 26.5%to 86%.Binocular and electron microscopy studies reveal that 60%of the vesicles are elongated,30%are spherical and 10%are fibrous.Petrography of the pumices exhibits vitrophyric texture with phenocrysts of feldspars and clinopyroxenes.X-ray diffractrogram and mineral analyses confirm plagioclase to be a major phase, while quartz and orthoclase are not uncommon.Todorokite is commonly present in the ferromanganese oxide coating present over some of the pumices.This paper also delves into some details concerning the controversial origin of the pumices and glass shards in the CIOB.展开更多
Nitrous oxide (N2O) distribution patterns in the Bering Sea basin (BSB) and Indian Sector of the Southern Ocean (ISSO) were described and compared. In both sites, the waters were divided into four layers: surfa...Nitrous oxide (N2O) distribution patterns in the Bering Sea basin (BSB) and Indian Sector of the Southern Ocean (ISSO) were described and compared. In both sites, the waters were divided into four layers: surface layer, subsurface layer, N2O maximum layer, and deep water. Simulations were made to find out the most important factors that regulate the N2O distribution patterns in different layers of both sites. The results showed that in the surface water, N2O was more understaturated in the ISSO than the BSB. This phenom- enon in the surface water of ISSO may result from ice melt water intrusion and northeastward transport of the Antarctic surface water. Results of the rough estimation of air-sea fluxes during the expedition were (-0.34±0.07)-(-0.64±0.13) μmol/(m2·d) and (-1.47±0.42)-(-1.77±0.51) μmol/(m-2·d) for the BSB and the ISSO, respectively. Strongly stratified surface layer and temperature minimum layer restricted exchange across the thermocline. The N2O maximum existed in higher concentration and deeper in the BSB than the ISSO, but their contribution to the upper layer by eddy diffusions was negligible. In deep waters, a concentration difference of 5 nmol/L N2O between these two sites was found, which suggested that N2O production occurred during thermohaline circulation. N2O may be a useful tracer to study important large-scale hydrographic processes.展开更多
Based on studies of palaeogeography, palaeobiogeography, palaeomagnetism, geochemistry and volcanism, this paper proposes that the Zhen'an-Xichuan area was a small Early Palaeozoic block rifted away from South Qin...Based on studies of palaeogeography, palaeobiogeography, palaeomagnetism, geochemistry and volcanism, this paper proposes that the Zhen'an-Xichuan area was a small Early Palaeozoic block rifted away from South Qinling and suturing onto North Qinling earlier than the other parts of South Qinling. In the Early Palaeozoic Qinling was a small archipelagic ocean basin with 5 rows of islands including the Zhen'an-Xichuan block. The drifting of the Yangtze and North China plates and the islands between them in the same direction at different speeds caused their suturing process to be different from the classic plate collision, which is the major feature of the suturing of the multi-island Tethys ocean basin. This also explains the problem that the Caledonian collision did not result in orogeny in eastern Qinling.展开更多
The early Albian Oceanic Anoxic Event 1 b(OAE 1 b) is well documented in the Tethys, Pacific and North Atlantic, but few studies have evaluated whether or not terrestrial records of OAE 1 b exist. In order to identify...The early Albian Oceanic Anoxic Event 1 b(OAE 1 b) is well documented in the Tethys, Pacific and North Atlantic, but few studies have evaluated whether or not terrestrial records of OAE 1 b exist. In order to identify terrestrial records of the early Albian OAE 1 b and to infer possible driving mechanisms, an integrated multi-proxy study from the late Aptian to Albian in the Fuxin lacustrine basin was conducted,including thick, organic-rich black mudstones, total organic carbon(TOC), organic carbon isotopes(d13 Corg), mercury concentration(Hg) and results from pyrolysis analyses(S2, Tmaxand HI). Results show three distinct short-term negative d13 Corgexcursions corresponding with relatively high TOC values,which could be counterparts of the Kilian, Paquier and Leenhardt sub-events of the early Albian OAE1 b. Atmospheric CO2 concentration(p CO2) recovered from C3 plant d13 Corgcompositions indicates an increasing trend in Unit C during the early Albian, and there are three short-term increases of p CO2 corresponding to the three sub-events of OAE 1 b at this time interval. We infer that a trend of increasing p CO2 during the Kilian sub-event in the study area is closely related to volcanism. Continental weathering calculated using chemical weathering indices(CIA, WIP and MIA(O)) show an increasing trend during the OAE 1 b interval, likely resulting from warmer and more humid conditions. Mixed sources of terrestrial plants and lacustrine plankton demonstrated by pyrolysis analyses(HI vs. Tmaxand S2 vs. TOC), indicate a terrestrial contribution to the organic-rich sediments of the Kilian, Paquier and Leenhardt sub-events of OAE 1 b. We suggest that a CO2-forced greenhouse effect during the early Albian might have triggered the relatively warm and humid palaeoclimatic conditions, and intensified chemical weathering that combined to create high nutrient and organic matter levels that were flushed into lakes contributing to eutrophication and anoxia in lacustrine and in contemporaneous oceanic systems.展开更多
The late Quaternary paleoceanographic changes in the western Arctic Ocean are revealed by quan- titative studies of foraminiferal abundance, ice-rafted detritus (IRD) and its mineralogical and petrological compositi...The late Quaternary paleoceanographic changes in the western Arctic Ocean are revealed by quan- titative studies of foraminiferal abundance, ice-rafted detritus (IRD) and its mineralogical and petrological compositions, planktonic Neogloboquadrina pachyderma (sin.) (Nps)-δ18O and -δ13C, biogenic and non-biogenic components in Core M03 token from the Chukchi Basin during the Sec- ond Chinese National Arctic Expedition cruise. Seven IRD events appeared at MIS 7, 5, 3 and 1. These IRD were carried in massive icebergs, which were exported to the Beaufort Sea through the M'Clure Strait Ice Stream, Canadian Arctic Archipelago, and then transported into the Chukchi Basin by the Beaufort Gyre. Low IRD deposition occurred during the glacial times when more extended ice cover and weakened Beaufort Gyre, while the open water condition and the intensified Beaufort Gyre during interglacial periods favored the IRD deposition. Therefore, the IRD events not only indicate the provenance of coarser detritus and ice export events, but also reflect the evolutionary histories of the Beaufort Gyre and North American ice sheet. Seven light Nps-δ18O and -δ13C excursions could respond to enhanced rates of sea ice formation resulting in the pro- duction and sinking of isotopically light brines, but was irrelevant to the warm Atlantic water and freshwater inputs. Whereas, the heavy Nps-δ18O and -δ13C values separately reflect the lessened Arctic freshwater and Pacific water, and well-ventilated surface water from the continental shelf and halocline water. Variations of CaCO3 content and planktonic foraminiferal abundance during the interglacial and glacial periods can demonstrate the incremental or diminishing input of the Atlantic water, while the total organic carbon (TOC) and opal contents increased and decreased during the glacial and interglacial periods, respectively, which could be related to the TOC degradation, opal dissolution and redox conditions of interface between the bottom water and sediments.展开更多
This study presents new major,trace and REE data for thirty-five ferromanganese nodules recovered from areas representing three different sediment types(siliceous,red clay and their transition zone)in the Central Indi...This study presents new major,trace and REE data for thirty-five ferromanganese nodules recovered from areas representing three different sediment types(siliceous,red clay and their transition zone)in the Central Indian Ocean Basin(CIOB)to address their genetic aspects,classification,growth rate,nature of host sediments and influence of REE in the processes of nodule formation.The nodules from CIOB are mostly either hydrogenetic(metals coming from oxygenated bottom water)and diagenetic(metals coming from suboxic sediment pore water)or a combination of both,depending on the source of supply of metal.However,a number of biogeochemical processes mediate this supply of metals which again changes from time to time,making the nodule growth process highly dynamic.This study suggests that at the initial stage of nodule growth,host sediments do not play much role in controlling the growth processes for which REEs can enter both Mn and Fe oxyhydroxide phases equally.Thus,the bottom water signature is imprinted in these early formed nodules irrespective of their host sediment substrate but with gradual growth and burial in the sediment,the main mode of metal enrichment becomes diagenetic through sediment pore water.This tends to increase the concentration of Mn,Ni and Cu over other elements which are retained in the sediment fraction.Among the REEs,Ce concentration of the nodules shows significant positive anomaly due to variation in redox potential and hence its magnitude can be used to get an idea about the metal enrichment procedure and the genetic type of the nodules.However,based on host sediment only,not much difference is found in the magnitude of Ce anomaly in these nodules.On the other hand,discrimination diagram,based on HFSE and REY chemistry,indicates that most of these nodules are of diagenetic origin under oxic condition with a trend towards hydrogenetic field.Further,the genetic type of the ferromanganese nodules from the CIOB are more effectively differentiated by a combination of their major and trace element concentrations rather than solely based on their REE or HFSE chemistry or host sediment substrate.展开更多
The largest and superimposed Tarim basin developed on the one of the three bigger craton, Tarim Craton, in China.The early Paleozoic is the heyday of its development and cratonization, and then changes to the differen...The largest and superimposed Tarim basin developed on the one of the three bigger craton, Tarim Craton, in China.The early Paleozoic is the heyday of its development and cratonization, and then changes to the different property basin. The reserved sedimentary strata of Neoproterozoicare recognized mainly in the local of outcrops periphery orogenic belts, but drilling core in the basin reveals them seldom. The proto-type of the initial Tarim Basinis always a mystery. The vast desert, hugethickness of sedimentary strata, multiple tectonic movements, and a low quality of deep data are the keys to getting to know him. We comprehensive field outcrops, wells, seismic reflection profiles with higher SNRs and aeromagnetic data, recognized about 20 normal fault-controlled rifting depressions of the Cryogenian and Ediacaran, which scattered throughout the basin, and developed on the Precambrian metamorphic and crystalline basement. The structural framework is clearly different from that of the overlying Phanerozoic. The rifting depressions consist of mainly half grabens, symmetrical troughs and horst-grabens. From the northeast to southwest of the basin, they are divided into three rifting depression groups(RDG)with the WNW, ENE, and NW-trends that are mainly controlled by normal faults. From the Cryogenian to Ediacaran, most of the main inherited faults to active and eventually ceased at the end of the Ediacaran or Early Cambrian, while subsidence centers appeared and migrated eastward along the faults. They formed under the NNESSW oriented and NNW-SSE-oriented extensional paleo-stress fields(relative to the present) during the Neoproterozoic, and were accompanied by clockwise shearing. According to the analysis of the activities of syn-sedimentary faults, filling sediments, magmatic events, and coordination with aeromagnetic anomalies, the tectonic properties of the fault depressions are different and are primarily continental rifts or intra-continental fault-controlled basins. The formation of the rifting depression was associated with the initial opening of the South Altun-West Kunlun Ocean and the South Tianshan Ocean, which were located at the northern and southern margins of the Tarim Block, respectively, in response to the break-up of the Supercontinent Rodinia and the initial opening of the Proto-Tethys Ocean.Inthe RDG developedfluvial, shallow marine and carbonate platform facies, accompanied with multiple phases of magma activities and glaciations during the Cryogenian and Ediacaran. The structural architectures of interfaces between the Neoproterozoic and Cambrian are mainly angular and parallel unconformities in the RDG. Over the parallel unconformities in the RDGs are beneficial for the organic-rich and/or phosphorites of the Yuertus Formation of the Lower Cambrian. The main fault belts of RDGs also controlled the small platform margin and slope break belt of in the Cambrian. The Neoproterozoic and the Lower Cambrian petroleum systems of the basin might be controlled by the RDGs in the initiation of the Tarimcraton.展开更多
The intense deformation zone in the central Indian Ocean, south of Indian continent is one of the most complex regions in terms of its structure and geodynamics. The deformation zone has been studied and debated in 19...The intense deformation zone in the central Indian Ocean, south of Indian continent is one of the most complex regions in terms of its structure and geodynamics. The deformation zone has been studied and debated in 1990s for its genesis. It was argued that deformation is mainly confined to sedimentary and oceanic crustal layers, while the large wave length geoidal anomalies, on which the deformation region lies, called for deeper sources. The inter connection between deeper and the shallower sources is found missing. The current study focuses on the complexities of this region by analyzing OBS (ocean bottom seismometer) data. The data acquired by five OBS systems along a 300 km long south-north profile in the CIOB (central Indian Ocean basin) have been modeled and the crustal and sub-crustal structure has been determined using 2-D tomographic inversion. Four subsurface layers are identified representing the sediment column, upper crustal layer, lower crustal layer and a sub-crustal layer (upper mantle layer). A considerable variation in thickness as well as velocity at all interfaces from sedimentary column to upper mantle is observed which indicates that the tectonic forces have affected the entire crust and sub-crustal configuration. The sediments are characterized by higher velocities (2.1 kin/s) due to the increased confining pressure. Modeling results indicated that the velocity in upper crust is in the range of 5.7-6.2 km/s and the velocity of the lower crust varies from 7.0-7.6 km/s. The velocity of the sub-crustal layer is in the range of 7.8-8.4 km/s. This high-velocity layer is interpreted as magmatic under-plating with strong lateral variations. The base of the 7.0 km/s layer at 12-15 km depth is interpreted as the Moho.展开更多
The chirp sub-bottom profiler,for its high resolution,easy accessibility and cost-effectiveness,has been widely used in acoustic detection.In this paper,the acoustic impedance and grain size compositions were obtained...The chirp sub-bottom profiler,for its high resolution,easy accessibility and cost-effectiveness,has been widely used in acoustic detection.In this paper,the acoustic impedance and grain size compositions were obtained based on the chirp sub-bottom profiler data collected in the Chukchi Plateau area during the 11th Arctic Expedition of China.The time-domain adaptive search matching algorithm was used and validated on our established theoretical model.The misfit between the inversion result and the theoretical model is less than 0.067%.The grain size was calculated according to the empirical relationship between the acoustic impedance and the grain size of the sediment.The average acoustic impedance of sub-seafloor strata is 2.5026×10^(6) kg(s m^(2))^(-1)and the average grain size(θvalue)of the seafloor surface sediment is 7.1498,indicating the predominant occurrence of very fine silt sediment in the study area.Comparison of the inversion results and the laboratory measurements of nearby borehole samples shows that they are in general agreement.展开更多
Okinawa Trough is a back-arc, initial marginal sea basin, located behind the Ryukyu Arc-Trench System. The formation and evolution of the Okinawa Trough is intimately related to the subduction process of the Philippin...Okinawa Trough is a back-arc, initial marginal sea basin, located behind the Ryukyu Arc-Trench System. The formation and evolution of the Okinawa Trough is intimately related to the subduction process of the Philippine Sea Plate beneath the Eurasian Plate since the late Miocene. The tectonic evolution of the trough is similar to other active back-arcs, such as the Mariana Trough and southern Lau Basin, all of which are experiencing the initial rifting and subsequent spreading process. This study reviews all petrologic and geochemical data of mafic volcanic lavas from the Okinawa Trough, Ryukyu Arc, and Philippine Sea Plate, combined with geophysical data to indicate the relationship between the subduction sources (input) and arc or back-arc magmas (output) in the Philippine Sea Plate-Ryukyu Arc-Okinawa Trough system (PROS). The results obtained showed that several components were variably involved in the petrogenesis of the Oki-nawa Trough lavas:sub-continental lithospheric mantle underlying the Eurasian Plate, Indian mid-oceanic ridge basalt (MORB)-type mantle, and Pacific MORB-type mantle. The addition of shallow aqueous fluids and deep hydrous melts from subducted components with the characteristics of Indian MORB-type mantle into the mantle source of lavas variably modifies the primitive mantle wedge beneath the Ryukyu and sub-continental lithospheric mantle (SCLM) beneath the Okinawa Trough. In the northeastern end of the trough and arc, instead of Indian MORB-type mantle, Pacific MORB-type mantle dominates the magma source. Along the strike of the Ryukyu Arc and Okinawa Trough, the systematic variations in trace element ratios and isotopic compositions reflect the first-order effect of variable subduction input on the magma source. In general, petrologic data, combined with geophysical data, imply that the Okinawa Trough is experiencing the"seafloor spreading"process in the southwest segment,"rift propagation"process in the middle seg-ment, and"crustal extension"process in the northeast segment, and a nascent ocean basin occurs in the southwest segment.展开更多
Conductivity, temperature and depth (CTD) data from 1993 2010 are used to study water tempera- ture in the upper Canada Basin. There are four kinds of water temperature structures: The remains of the winter convect...Conductivity, temperature and depth (CTD) data from 1993 2010 are used to study water tempera- ture in the upper Canada Basin. There are four kinds of water temperature structures: The remains of the winter convective mixed layer, the near-surface temperature maximum (NSTM), the wind-driven mixed layer, and the advected water under sea ice. The NSTM mainly appears within the conductive mixed layer that forms in winter. Solar heating and surface cooling are two basic factors in the formation of the NSTM. The NSTM can also appear in undisturbed open water, as long as there is surface cooling. Water in open water areas may advect beneath the sea ice. The overlying sea ice cools the surface of the advected water, and a temperature maximum could appear similar to the NSTM. The NSTM mostly occurred at depths 10-30 m because of its deepening and strengthening during smnmer, with highest frequency at 20 m. Two clear stages of interannual variation are identified. Before 2003, most NSTMs were observed in marginal ice zones and open waters, so temperature maxima were usually warmer than 0~C. After 2004, most NSTMs occurred in ice-covered areas, with nmch colder temperature maxima. Average depths of the temperature maxima in most years were about 20 m, except for about 16 m in 2007, which was related to the extreme minimum of ice cover. Average temperatures were around 0.8~C to 1.1~C, but increased to around 0.5~C in 2004, 2007 and 2009, corresponding to reduced sea ice. As a no-ice summer in the Arctic is expected, the NSTM will be warmer with sea ice decline. Most energy absorbed by seawater has been transported to sea ice and the atmosphere. The heat near the NSTM is only the remains of total absorption, and the energy stored in the NSTM is not considerable. However, the NSTM is an important sign of the increasing absorption of solar energy in seawater.展开更多
Diversity of bacteria was studied in deep-sea sediments from the Shikoku Basin in the Northwest Pacific Ocean by PCR, RFLP and sequence analysis of 16S rDNA and comparing with Genbank database. Based on the RFLP profi...Diversity of bacteria was studied in deep-sea sediments from the Shikoku Basin in the Northwest Pacific Ocean by PCR, RFLP and sequence analysis of 16S rDNA and comparing with Genbank database. Based on the RFLP profile generated, 77 clones from the 16S rDNA library were divided into 27 types. Phylogenetic analysis showed that the 27 independent clones fell into four groups: Proteobac-teria (62.96%), Chloroflexi (14.81%), Planctomycetes (14.81%) and Acidobacteria (7.41%). Among all sequenced clones, 6 were related to the sulfur or sulfate metabolism bacteria and the results also demonstrated that some bacteria in deep-sea sediments had relation to matter-energy circulation.展开更多
Using 20 models of the Coupled Model Intercomparison Project Phase 5 (CMIP5), the simulation of the Southwest Indian Ocean (SWIO) thermocline dome is evaluated and its role in shaping the Indian Ocean Basin (IOB...Using 20 models of the Coupled Model Intercomparison Project Phase 5 (CMIP5), the simulation of the Southwest Indian Ocean (SWIO) thermocline dome is evaluated and its role in shaping the Indian Ocean Basin (IOB) mode following E1 Nifio investigated. In most of the CMIP5 models, due to an easterly wind bias along the equator, the simulated SWIO thermocline is too deep, which could further influence the amplitude of the interannual IOB mode. A model with a shallow (deep) thermocline dome tends to simulate a strong (weak) IOB mode, including key attributes such as the SWIO SST warming, antisymmetric pattern during boreal spring, and second North Indian Ocean warming during boreal summer. Under global warming, the thermocline dome deepens with the easterly wind trend along the equator in most of the models. However, the IOB amplitude does not follow such a change of the SWIO thermocline among the models; rather, it follows future changes in both ENSO forcing and local convection feedback, suggesting a decreasing effect of the deepening SWIO thermocline dome on the change in the IOB mode in the future.展开更多
The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity ...The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity structure of the marine residual basin in detail,leading to the lack of a deeper understanding of the distribution and lithology owing to strong energy shielding on the top interface of marine sediments.In this study,we present seismic tomography data from ocean bottom seismographs that describe the NEE-trending velocity distributions of the basin.The results indicate that strong velocity variations occur at shallow crustal levels.Horizontal velocity bodies show good correlation with surface geological features,and multi-layer features exist in the vertical velocity framework(depth:0–10 km).The analyses of the velocity model,gravity data,magnetic data,multichannel seismic profiles,and drilling data showed that high-velocity anomalies(>6.5 km/s)of small(thickness:1–2 km)and large(thickness:>5 km)scales were caused by igneous complexes in the multi-layer structure,which were active during the Palaeogene.Possible locations of good Mesozoic and Palaeozoic marine strata are limited to the Central Uplift and the western part of the Northern Depression along the wide-angle ocean bottom seismograph array.Following the Indosinian movement,a strong compression existed in the Northern Depression during the extensional phase that caused the formation of folds in the middle of the survey line.This study is useful for reconstructing the regional tectonic evolution and delineating the distribution of the marine residual basin in the South Yellow Sea basin.展开更多
During the 3rd Chinese National Arctic Research Expedition cruise in the summer of 2008,nutrients(NO3^-,NO2^-,SiO3^2-,and PO4^3-)and dissolved oxygen were measured in the western Arctic Ocean,to derive the vertical di...During the 3rd Chinese National Arctic Research Expedition cruise in the summer of 2008,nutrients(NO3^-,NO2^-,SiO3^2-,and PO4^3-)and dissolved oxygen were measured in the western Arctic Ocean,to derive the vertical distribution of nutrient tracers and its relationship to water structure and biogeochemical processes.The nutrient data show that surface waters had the lowest NO3^-/PO4^3-(mean of 0.5)and SiO3^2-/PO3^-(mean of 2.8)values in the water column,suggesting an excess of phosphate.Winter Bering Shelf water(wBSW)had high Si^*(16.7μmol/L;Si^*=[Si(OH)4]–[NO3^-])with negative N^*(−11.7μmol/L;N^*=[PO4^3-]−16[PO4^3-]+3.5μmol/L)in the water column,indicating nitrate deficiency.The warm Atlantic layer had positive N^*(0.8μmol/L)and negative Si^*(−5.4μmol/L)compared with Pacific source water.The vertical distribution of nutrients indicates that wBSW can be characterized by N^* minimum and Si^* maximum.In contrast,minima of Si^* and SiO3^2-/PO4^3- below 200 m indicate the distribution of Atlantic warm water.展开更多
: This paper presents a quantitative analysis of the relations of the occurrence of polymetallic nodules with the geochemical actions of microbes in the seawater, pore water and sediments at the bottom of the eastern ...: This paper presents a quantitative analysis of the relations of the occurrence of polymetallic nodules with the geochemical actions of microbes in the seawater, pore water and sediments at the bottom of the eastern Pacific Ocean basin. Emphasis is laid on the relations of the activity intensity and biochemical transformation rate of aerobic bacteria (iron bacteria, Thiobacillus thioparus, halobacteria and manganese—oxidizing bacteria) and anaerobic bacteria (sulphate—reducing bacteria, denitrifying bacteria, Thiobacillus denitrificans) with mineralization. The experimental research on the migration and accumulation of ore-forming elements caused by microbial and chemical actions shows that the microbes have changed the conditions of oxidation and reduction in the system, and their effect on the element precipitation is much stronger than the chemical actions and accelerates the enrichment of Fe and Ma It demonstrates that the microbes can change the environment to promote the accumulation of ore-forming elements, thus leading to indirect mineralization.展开更多
基金jointly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA11010102)the NSFC (Grant Nos. 41375094 and 41406028)+1 种基金the "973" project (Grant No. 2012CB956000)the NSFC–Shandong Joint Fund for Marine Science Research Centers (Grant No. U1406401)
文摘The relationships between the tropical Indian Ocean basin (IOB)/dipole (IOD) mode of SST anomalies (SSTAs) and ENSO phase transition during the following year are examined and compared in observations for the period 1958-2008. Both partial correlation analysis and composite analysis show that both the positive (negative) phase of the lOB and IOD (independent of each other) in the tropical Indian Ocean are possible contributors to the E1 Nino (La Nifia) decay and phase transition to La Nifia (El Nifio) about one year later. However, the influence on ENSO transition induced by the IOB is stronger than that by the IOD. The SSTAs in the equatorial central-eastern Pacific in the coming year originate from subsurface temperature anomalies in the equatorial eastern Indian and western Pacific Ocean, induced by the IOB and IOD through eastward and upward propagation to meet the surface. During this process, however the contribution of the oceanic channel process between the tropical Indian and Pacific oceans is totally different for the IOB and IOD. For the IOD, the influence of the Indonesian Throughflow transport anomalies could propagate to the eastern Pacific to induce the ENSO transition. For the IOB, the impact of the oceanic channel stays and disappears in the western Pacific without propagation to the eastern Pacific.
文摘On the basis of exhaustive researches on the facies sequences and depositlonal evolutionary process of various depositional systems, the genetic stratigraphic framework of the extensional rifted oceanic basin, which has undergone strong structural destruction, has been reconstructed by means of dynamic genetic stratigraphic analysis. Five depositional episodes have been distinguished from various isochronous stratigraphic boundaries and stratigraphic sequences with the three-dimensional structure of each depositional episode analysed in detail. The tectonic paleogeographic environment corresponding to different stages of each depositional episode has been reconstructed for individual depositional system tracts. And the evolution history of this rifted basin has been divided into four stages' initial rifting and oceanization of continental crust, stretching and spreading of the basin, subduction and basin differentiation, and convergence and collision. A NNE-trending intracontinental soft collision suture was left after the closing of the basin.
基金supported by the National Natural Science Foundation of China under contract Nos 40306005 and 40376007.
文摘A year-round halocline is a particular hydrographic structure in the upperArctic Ocean. On the basis of an analysis of the hydrographic data collected in the Arctic Ocean, itis found that a double-halocline structure exists in the upper layer of the southern Canada Basin,which is absolutely different from the Cold Halocline Layer (CHL) in the Eurasian Basin. ThePacific-origin water is the primary factor in the formation of the double-halocline structure. Theupper halocline lies between the summer modification and the winter modification of thePacific-origin water while the lower halocline results from the Pacific-origin water overlying uponthe Atlantic-origin water. Both haloclines are all the year-round although seasonal and interannualvariations have been detected in the historical data.
基金the project "Surveys for Polymetallic Nodules" project funded by Ministry of Earth Sciences, (previously Department of Ocean Development), New DelhiPD acknowledges the Councilof Scientific and Industrial Research, New Delhi, for financial assistance in the form of a Research Fellowship
文摘The Central Indian Ocean Basin (CIOB) basalts are plagioclase-rich, while olivine and pyroxene are very few. The analyses of 41 samples reveal high FeOT (~10-18 wt%) and TiO 2 (~1.4-2.7 wt%) indicating a ferrobasaltic composition. The basalts have high incompatible elements (Zr 63-228 ppm; Nb ~1-5 ppm; Ba ~15-78 ppm; La ~3-16 ppm), a similar U/Pb (0.02-0.4) ratio as the normal midoceanic basalt (0.16±0.07) but the Ba/Nb (12.5-53) ratio is much larger than that of the normal midoceanic ridge basalt (~5.7) and Primitive Mantle (9.56). Interestingly almost all of the basalts have a significant negative Eu anomaly (Eu/Eu*=0.78-1.00) that may have been a result of the removal of feldspar and pyroxene during crystal fractionation. These compositional variations suggest that the basalts were derived through fractional crystallization together with low partial melting of a shallow seated magma.
基金the financial assistance provided under the CSIR(New Delhi) Fellowship scheme
文摘About 400 pumice clasts collected from the Central Indian Ocean Basin(CIOB)were studied for their morphology and were classified based on their shape and size.A majority of the samples range between1 cm and 36 cm and in the Zinggs shape diagram plot in the equant and oblate fields.The Corey Shape Factor for most of the samples is close to 0.7,which is common for volcaniclastic material. The physical properties such as density,specific gravity,void ratio,porosity,moisture content and degree of saturation,were determined for 30 pumice samples.Density varies from 0.21 to 0.74 g/cm^3 specific gravity 1.84 to 3.27,void ratio 2.21 to 10.67,porosity 67%to 91%,moisture content during sinking 0.44 to 2.35 and degree of saturation varies from 26.5%to 86%.Binocular and electron microscopy studies reveal that 60%of the vesicles are elongated,30%are spherical and 10%are fibrous.Petrography of the pumices exhibits vitrophyric texture with phenocrysts of feldspars and clinopyroxenes.X-ray diffractrogram and mineral analyses confirm plagioclase to be a major phase, while quartz and orthoclase are not uncommon.Todorokite is commonly present in the ferromanganese oxide coating present over some of the pumices.This paper also delves into some details concerning the controversial origin of the pumices and glass shards in the CIOB.
基金The National Natural Science Foundation of China(NSFC)under contract Nos 40906102 and 41230529the CHINARE under contract Nos 2012-2015(-01-04-02),2012-2015(01-02-01)and 2012-2015(03-04-02)the CAA International Cooperation Projects under contract Nos IC201201 and IC201308
文摘Nitrous oxide (N2O) distribution patterns in the Bering Sea basin (BSB) and Indian Sector of the Southern Ocean (ISSO) were described and compared. In both sites, the waters were divided into four layers: surface layer, subsurface layer, N2O maximum layer, and deep water. Simulations were made to find out the most important factors that regulate the N2O distribution patterns in different layers of both sites. The results showed that in the surface water, N2O was more understaturated in the ISSO than the BSB. This phenom- enon in the surface water of ISSO may result from ice melt water intrusion and northeastward transport of the Antarctic surface water. Results of the rough estimation of air-sea fluxes during the expedition were (-0.34±0.07)-(-0.64±0.13) μmol/(m2·d) and (-1.47±0.42)-(-1.77±0.51) μmol/(m-2·d) for the BSB and the ISSO, respectively. Strongly stratified surface layer and temperature minimum layer restricted exchange across the thermocline. The N2O maximum existed in higher concentration and deeper in the BSB than the ISSO, but their contribution to the upper layer by eddy diffusions was negligible. In deep waters, a concentration difference of 5 nmol/L N2O between these two sites was found, which suggested that N2O production occurred during thermohaline circulation. N2O may be a useful tracer to study important large-scale hydrographic processes.
基金China National Natural Science Foundation Grant No.49290100
文摘Based on studies of palaeogeography, palaeobiogeography, palaeomagnetism, geochemistry and volcanism, this paper proposes that the Zhen'an-Xichuan area was a small Early Palaeozoic block rifted away from South Qinling and suturing onto North Qinling earlier than the other parts of South Qinling. In the Early Palaeozoic Qinling was a small archipelagic ocean basin with 5 rows of islands including the Zhen'an-Xichuan block. The drifting of the Yangtze and North China plates and the islands between them in the same direction at different speeds caused their suturing process to be different from the classic plate collision, which is the major feature of the suturing of the multi-island Tethys ocean basin. This also explains the problem that the Caledonian collision did not result in orogeny in eastern Qinling.
基金supported by the Yue Qi Scholar Project of China University of Mining and Technology(Beijing)Chinathe National Natural Science Foundation of China(41572090+1 种基金42002128)Shandong Key Laboratory of Depositional Mineralization&Sedimentary Mineral Shandong University of Science and Technology China(DMSM20190015)。
文摘The early Albian Oceanic Anoxic Event 1 b(OAE 1 b) is well documented in the Tethys, Pacific and North Atlantic, but few studies have evaluated whether or not terrestrial records of OAE 1 b exist. In order to identify terrestrial records of the early Albian OAE 1 b and to infer possible driving mechanisms, an integrated multi-proxy study from the late Aptian to Albian in the Fuxin lacustrine basin was conducted,including thick, organic-rich black mudstones, total organic carbon(TOC), organic carbon isotopes(d13 Corg), mercury concentration(Hg) and results from pyrolysis analyses(S2, Tmaxand HI). Results show three distinct short-term negative d13 Corgexcursions corresponding with relatively high TOC values,which could be counterparts of the Kilian, Paquier and Leenhardt sub-events of the early Albian OAE1 b. Atmospheric CO2 concentration(p CO2) recovered from C3 plant d13 Corgcompositions indicates an increasing trend in Unit C during the early Albian, and there are three short-term increases of p CO2 corresponding to the three sub-events of OAE 1 b at this time interval. We infer that a trend of increasing p CO2 during the Kilian sub-event in the study area is closely related to volcanism. Continental weathering calculated using chemical weathering indices(CIA, WIP and MIA(O)) show an increasing trend during the OAE 1 b interval, likely resulting from warmer and more humid conditions. Mixed sources of terrestrial plants and lacustrine plankton demonstrated by pyrolysis analyses(HI vs. Tmaxand S2 vs. TOC), indicate a terrestrial contribution to the organic-rich sediments of the Kilian, Paquier and Leenhardt sub-events of OAE 1 b. We suggest that a CO2-forced greenhouse effect during the early Albian might have triggered the relatively warm and humid palaeoclimatic conditions, and intensified chemical weathering that combined to create high nutrient and organic matter levels that were flushed into lakes contributing to eutrophication and anoxia in lacustrine and in contemporaneous oceanic systems.
基金The National Basic Research Program of China under contract No.G2007CB815903the National Natural Science Foundation of China under contract No.41030859+1 种基金Chinese IPY Program (2007-2009)China Geological Survey projectH[2011]01-14-04
文摘The late Quaternary paleoceanographic changes in the western Arctic Ocean are revealed by quan- titative studies of foraminiferal abundance, ice-rafted detritus (IRD) and its mineralogical and petrological compositions, planktonic Neogloboquadrina pachyderma (sin.) (Nps)-δ18O and -δ13C, biogenic and non-biogenic components in Core M03 token from the Chukchi Basin during the Sec- ond Chinese National Arctic Expedition cruise. Seven IRD events appeared at MIS 7, 5, 3 and 1. These IRD were carried in massive icebergs, which were exported to the Beaufort Sea through the M'Clure Strait Ice Stream, Canadian Arctic Archipelago, and then transported into the Chukchi Basin by the Beaufort Gyre. Low IRD deposition occurred during the glacial times when more extended ice cover and weakened Beaufort Gyre, while the open water condition and the intensified Beaufort Gyre during interglacial periods favored the IRD deposition. Therefore, the IRD events not only indicate the provenance of coarser detritus and ice export events, but also reflect the evolutionary histories of the Beaufort Gyre and North American ice sheet. Seven light Nps-δ18O and -δ13C excursions could respond to enhanced rates of sea ice formation resulting in the pro- duction and sinking of isotopically light brines, but was irrelevant to the warm Atlantic water and freshwater inputs. Whereas, the heavy Nps-δ18O and -δ13C values separately reflect the lessened Arctic freshwater and Pacific water, and well-ventilated surface water from the continental shelf and halocline water. Variations of CaCO3 content and planktonic foraminiferal abundance during the interglacial and glacial periods can demonstrate the incremental or diminishing input of the Atlantic water, while the total organic carbon (TOC) and opal contents increased and decreased during the glacial and interglacial periods, respectively, which could be related to the TOC degradation, opal dissolution and redox conditions of interface between the bottom water and sediments.
基金the support of CSIR Senior Research Fellowship,Indiaa part of the“Polymetallic Nodule:Survey and Exploration”project(GAP 2175)supported by Ministry of Earth Sciences,Govt.of India.This is NIO's contribution No.6633。
文摘This study presents new major,trace and REE data for thirty-five ferromanganese nodules recovered from areas representing three different sediment types(siliceous,red clay and their transition zone)in the Central Indian Ocean Basin(CIOB)to address their genetic aspects,classification,growth rate,nature of host sediments and influence of REE in the processes of nodule formation.The nodules from CIOB are mostly either hydrogenetic(metals coming from oxygenated bottom water)and diagenetic(metals coming from suboxic sediment pore water)or a combination of both,depending on the source of supply of metal.However,a number of biogeochemical processes mediate this supply of metals which again changes from time to time,making the nodule growth process highly dynamic.This study suggests that at the initial stage of nodule growth,host sediments do not play much role in controlling the growth processes for which REEs can enter both Mn and Fe oxyhydroxide phases equally.Thus,the bottom water signature is imprinted in these early formed nodules irrespective of their host sediment substrate but with gradual growth and burial in the sediment,the main mode of metal enrichment becomes diagenetic through sediment pore water.This tends to increase the concentration of Mn,Ni and Cu over other elements which are retained in the sediment fraction.Among the REEs,Ce concentration of the nodules shows significant positive anomaly due to variation in redox potential and hence its magnitude can be used to get an idea about the metal enrichment procedure and the genetic type of the nodules.However,based on host sediment only,not much difference is found in the magnitude of Ce anomaly in these nodules.On the other hand,discrimination diagram,based on HFSE and REY chemistry,indicates that most of these nodules are of diagenetic origin under oxic condition with a trend towards hydrogenetic field.Further,the genetic type of the ferromanganese nodules from the CIOB are more effectively differentiated by a combination of their major and trace element concentrations rather than solely based on their REE or HFSE chemistry or host sediment substrate.
基金granted by the National Natural Science Foundation of China(Grant Nos.41872121&41630207)the Basic Scientific Research Projects of the Chinese Academy of Geological Sciences(Grant Nos.JYYWF20180903&JYYWF20182103&A1903)+1 种基金the Science Research project from the Northwest Subsidiary of SINOPEC(Grant No.KY2013-S-024)the work project of Chinese Geological Survey(Grant Nos.DD20160169,12120115026901&DD20190006)
文摘The largest and superimposed Tarim basin developed on the one of the three bigger craton, Tarim Craton, in China.The early Paleozoic is the heyday of its development and cratonization, and then changes to the different property basin. The reserved sedimentary strata of Neoproterozoicare recognized mainly in the local of outcrops periphery orogenic belts, but drilling core in the basin reveals them seldom. The proto-type of the initial Tarim Basinis always a mystery. The vast desert, hugethickness of sedimentary strata, multiple tectonic movements, and a low quality of deep data are the keys to getting to know him. We comprehensive field outcrops, wells, seismic reflection profiles with higher SNRs and aeromagnetic data, recognized about 20 normal fault-controlled rifting depressions of the Cryogenian and Ediacaran, which scattered throughout the basin, and developed on the Precambrian metamorphic and crystalline basement. The structural framework is clearly different from that of the overlying Phanerozoic. The rifting depressions consist of mainly half grabens, symmetrical troughs and horst-grabens. From the northeast to southwest of the basin, they are divided into three rifting depression groups(RDG)with the WNW, ENE, and NW-trends that are mainly controlled by normal faults. From the Cryogenian to Ediacaran, most of the main inherited faults to active and eventually ceased at the end of the Ediacaran or Early Cambrian, while subsidence centers appeared and migrated eastward along the faults. They formed under the NNESSW oriented and NNW-SSE-oriented extensional paleo-stress fields(relative to the present) during the Neoproterozoic, and were accompanied by clockwise shearing. According to the analysis of the activities of syn-sedimentary faults, filling sediments, magmatic events, and coordination with aeromagnetic anomalies, the tectonic properties of the fault depressions are different and are primarily continental rifts or intra-continental fault-controlled basins. The formation of the rifting depression was associated with the initial opening of the South Altun-West Kunlun Ocean and the South Tianshan Ocean, which were located at the northern and southern margins of the Tarim Block, respectively, in response to the break-up of the Supercontinent Rodinia and the initial opening of the Proto-Tethys Ocean.Inthe RDG developedfluvial, shallow marine and carbonate platform facies, accompanied with multiple phases of magma activities and glaciations during the Cryogenian and Ediacaran. The structural architectures of interfaces between the Neoproterozoic and Cambrian are mainly angular and parallel unconformities in the RDG. Over the parallel unconformities in the RDGs are beneficial for the organic-rich and/or phosphorites of the Yuertus Formation of the Lower Cambrian. The main fault belts of RDGs also controlled the small platform margin and slope break belt of in the Cambrian. The Neoproterozoic and the Lower Cambrian petroleum systems of the basin might be controlled by the RDGs in the initiation of the Tarimcraton.
文摘The intense deformation zone in the central Indian Ocean, south of Indian continent is one of the most complex regions in terms of its structure and geodynamics. The deformation zone has been studied and debated in 1990s for its genesis. It was argued that deformation is mainly confined to sedimentary and oceanic crustal layers, while the large wave length geoidal anomalies, on which the deformation region lies, called for deeper sources. The inter connection between deeper and the shallower sources is found missing. The current study focuses on the complexities of this region by analyzing OBS (ocean bottom seismometer) data. The data acquired by five OBS systems along a 300 km long south-north profile in the CIOB (central Indian Ocean basin) have been modeled and the crustal and sub-crustal structure has been determined using 2-D tomographic inversion. Four subsurface layers are identified representing the sediment column, upper crustal layer, lower crustal layer and a sub-crustal layer (upper mantle layer). A considerable variation in thickness as well as velocity at all interfaces from sedimentary column to upper mantle is observed which indicates that the tectonic forces have affected the entire crust and sub-crustal configuration. The sediments are characterized by higher velocities (2.1 kin/s) due to the increased confining pressure. Modeling results indicated that the velocity in upper crust is in the range of 5.7-6.2 km/s and the velocity of the lower crust varies from 7.0-7.6 km/s. The velocity of the sub-crustal layer is in the range of 7.8-8.4 km/s. This high-velocity layer is interpreted as magmatic under-plating with strong lateral variations. The base of the 7.0 km/s layer at 12-15 km depth is interpreted as the Moho.
基金supported by the National Key R&D Program of China (No.2021YFC2801202)the National Natural Science Foundation of China (No.42076224)the Fundamental Research Funds for the Central Universities (No.202262012)。
文摘The chirp sub-bottom profiler,for its high resolution,easy accessibility and cost-effectiveness,has been widely used in acoustic detection.In this paper,the acoustic impedance and grain size compositions were obtained based on the chirp sub-bottom profiler data collected in the Chukchi Plateau area during the 11th Arctic Expedition of China.The time-domain adaptive search matching algorithm was used and validated on our established theoretical model.The misfit between the inversion result and the theoretical model is less than 0.067%.The grain size was calculated according to the empirical relationship between the acoustic impedance and the grain size of the sediment.The average acoustic impedance of sub-seafloor strata is 2.5026×10^(6) kg(s m^(2))^(-1)and the average grain size(θvalue)of the seafloor surface sediment is 7.1498,indicating the predominant occurrence of very fine silt sediment in the study area.Comparison of the inversion results and the laboratory measurements of nearby borehole samples shows that they are in general agreement.
基金The National Natural Science Foundation of China under contract Nos 41322036,41230960,40906034,41276003 and 41176058China Ocean Mineral Resources R&D Association(COMRA)under contract No.DY125-12-R-05
文摘Okinawa Trough is a back-arc, initial marginal sea basin, located behind the Ryukyu Arc-Trench System. The formation and evolution of the Okinawa Trough is intimately related to the subduction process of the Philippine Sea Plate beneath the Eurasian Plate since the late Miocene. The tectonic evolution of the trough is similar to other active back-arcs, such as the Mariana Trough and southern Lau Basin, all of which are experiencing the initial rifting and subsequent spreading process. This study reviews all petrologic and geochemical data of mafic volcanic lavas from the Okinawa Trough, Ryukyu Arc, and Philippine Sea Plate, combined with geophysical data to indicate the relationship between the subduction sources (input) and arc or back-arc magmas (output) in the Philippine Sea Plate-Ryukyu Arc-Okinawa Trough system (PROS). The results obtained showed that several components were variably involved in the petrogenesis of the Oki-nawa Trough lavas:sub-continental lithospheric mantle underlying the Eurasian Plate, Indian mid-oceanic ridge basalt (MORB)-type mantle, and Pacific MORB-type mantle. The addition of shallow aqueous fluids and deep hydrous melts from subducted components with the characteristics of Indian MORB-type mantle into the mantle source of lavas variably modifies the primitive mantle wedge beneath the Ryukyu and sub-continental lithospheric mantle (SCLM) beneath the Okinawa Trough. In the northeastern end of the trough and arc, instead of Indian MORB-type mantle, Pacific MORB-type mantle dominates the magma source. Along the strike of the Ryukyu Arc and Okinawa Trough, the systematic variations in trace element ratios and isotopic compositions reflect the first-order effect of variable subduction input on the magma source. In general, petrologic data, combined with geophysical data, imply that the Okinawa Trough is experiencing the"seafloor spreading"process in the southwest segment,"rift propagation"process in the middle seg-ment, and"crustal extension"process in the northeast segment, and a nascent ocean basin occurs in the southwest segment.
基金supported by the Global Change Research Program (Grant no. 2010CB951403)the National Natural Science Foundation of China (Grant no.40631006)
文摘Conductivity, temperature and depth (CTD) data from 1993 2010 are used to study water tempera- ture in the upper Canada Basin. There are four kinds of water temperature structures: The remains of the winter convective mixed layer, the near-surface temperature maximum (NSTM), the wind-driven mixed layer, and the advected water under sea ice. The NSTM mainly appears within the conductive mixed layer that forms in winter. Solar heating and surface cooling are two basic factors in the formation of the NSTM. The NSTM can also appear in undisturbed open water, as long as there is surface cooling. Water in open water areas may advect beneath the sea ice. The overlying sea ice cools the surface of the advected water, and a temperature maximum could appear similar to the NSTM. The NSTM mostly occurred at depths 10-30 m because of its deepening and strengthening during smnmer, with highest frequency at 20 m. Two clear stages of interannual variation are identified. Before 2003, most NSTMs were observed in marginal ice zones and open waters, so temperature maxima were usually warmer than 0~C. After 2004, most NSTMs occurred in ice-covered areas, with nmch colder temperature maxima. Average depths of the temperature maxima in most years were about 20 m, except for about 16 m in 2007, which was related to the extreme minimum of ice cover. Average temperatures were around 0.8~C to 1.1~C, but increased to around 0.5~C in 2004, 2007 and 2009, corresponding to reduced sea ice. As a no-ice summer in the Arctic is expected, the NSTM will be warmer with sea ice decline. Most energy absorbed by seawater has been transported to sea ice and the atmosphere. The heat near the NSTM is only the remains of total absorption, and the energy stored in the NSTM is not considerable. However, the NSTM is an important sign of the increasing absorption of solar energy in seawater.
文摘Diversity of bacteria was studied in deep-sea sediments from the Shikoku Basin in the Northwest Pacific Ocean by PCR, RFLP and sequence analysis of 16S rDNA and comparing with Genbank database. Based on the RFLP profile generated, 77 clones from the 16S rDNA library were divided into 27 types. Phylogenetic analysis showed that the 27 independent clones fell into four groups: Proteobac-teria (62.96%), Chloroflexi (14.81%), Planctomycetes (14.81%) and Acidobacteria (7.41%). Among all sequenced clones, 6 were related to the sulfur or sulfate metabolism bacteria and the results also demonstrated that some bacteria in deep-sea sediments had relation to matter-energy circulation.
基金supported by the National Basic Research Program of China (Grant Nos.2012CB955600 and 2015CB954300)the National Natural Science Foundation of China (Grant Nos. 41106010 and 41476003)+1 种基金the State Key Laboratory of Tropical Oceanography, Chinese Academy of Sciences (Grant Nos. LTO1206 and LTOZZ1202)a China Meteorological Public Welfare Science Research Project (Grant No. GYHY201306027)
文摘Using 20 models of the Coupled Model Intercomparison Project Phase 5 (CMIP5), the simulation of the Southwest Indian Ocean (SWIO) thermocline dome is evaluated and its role in shaping the Indian Ocean Basin (IOB) mode following E1 Nifio investigated. In most of the CMIP5 models, due to an easterly wind bias along the equator, the simulated SWIO thermocline is too deep, which could further influence the amplitude of the interannual IOB mode. A model with a shallow (deep) thermocline dome tends to simulate a strong (weak) IOB mode, including key attributes such as the SWIO SST warming, antisymmetric pattern during boreal spring, and second North Indian Ocean warming during boreal summer. Under global warming, the thermocline dome deepens with the easterly wind trend along the equator in most of the models. However, the IOB amplitude does not follow such a change of the SWIO thermocline among the models; rather, it follows future changes in both ENSO forcing and local convection feedback, suggesting a decreasing effect of the deepening SWIO thermocline dome on the change in the IOB mode in the future.
基金The National Natural Science Foundation of China under contract No.41806048the Open Fund of the Hubei Key Laboratory of Marine Geological Resources under contract No.MGR202009+2 种基金the Fund from the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resource,Institute of Geology,Chinese Academy of Geological Sciences under contract No.J1901-16the Aoshan Science and Technology Innovation Project of Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2015ASKJ03-Seabed Resourcesthe Fund from the Korea Institute of Ocean Science and Technology(KIOST)under contract No.PE99741.
文摘The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity structure of the marine residual basin in detail,leading to the lack of a deeper understanding of the distribution and lithology owing to strong energy shielding on the top interface of marine sediments.In this study,we present seismic tomography data from ocean bottom seismographs that describe the NEE-trending velocity distributions of the basin.The results indicate that strong velocity variations occur at shallow crustal levels.Horizontal velocity bodies show good correlation with surface geological features,and multi-layer features exist in the vertical velocity framework(depth:0–10 km).The analyses of the velocity model,gravity data,magnetic data,multichannel seismic profiles,and drilling data showed that high-velocity anomalies(>6.5 km/s)of small(thickness:1–2 km)and large(thickness:>5 km)scales were caused by igneous complexes in the multi-layer structure,which were active during the Palaeogene.Possible locations of good Mesozoic and Palaeozoic marine strata are limited to the Central Uplift and the western part of the Northern Depression along the wide-angle ocean bottom seismograph array.Following the Indosinian movement,a strong compression existed in the Northern Depression during the extensional phase that caused the formation of folds in the middle of the survey line.This study is useful for reconstructing the regional tectonic evolution and delineating the distribution of the marine residual basin in the South Yellow Sea basin.
基金The National Natural Science Foundation of China under contract Nos 41941013,41776205,41976226 and 41806228the Scientific Research Funds of Second Institute of Oceanography,Ministry of Natural Resources,under contract No.QNYC2003the Chinese Polar Environment Comprehensive Investigation&Assessment Programs under contract Nos 0304 and 0402.
文摘During the 3rd Chinese National Arctic Research Expedition cruise in the summer of 2008,nutrients(NO3^-,NO2^-,SiO3^2-,and PO4^3-)and dissolved oxygen were measured in the western Arctic Ocean,to derive the vertical distribution of nutrient tracers and its relationship to water structure and biogeochemical processes.The nutrient data show that surface waters had the lowest NO3^-/PO4^3-(mean of 0.5)and SiO3^2-/PO3^-(mean of 2.8)values in the water column,suggesting an excess of phosphate.Winter Bering Shelf water(wBSW)had high Si^*(16.7μmol/L;Si^*=[Si(OH)4]–[NO3^-])with negative N^*(−11.7μmol/L;N^*=[PO4^3-]−16[PO4^3-]+3.5μmol/L)in the water column,indicating nitrate deficiency.The warm Atlantic layer had positive N^*(0.8μmol/L)and negative Si^*(−5.4μmol/L)compared with Pacific source water.The vertical distribution of nutrients indicates that wBSW can be characterized by N^* minimum and Si^* maximum.In contrast,minima of Si^* and SiO3^2-/PO4^3- below 200 m indicate the distribution of Atlantic warm water.
基金This paper is based on the results of project No. 49472111 of the National Natural Science Foundation of China and a major project of science and technology of the "Eighth Five-Year Plan" (1991-1995) as well as marine investigations of cruises DY85-1 and DY85-3.
文摘: This paper presents a quantitative analysis of the relations of the occurrence of polymetallic nodules with the geochemical actions of microbes in the seawater, pore water and sediments at the bottom of the eastern Pacific Ocean basin. Emphasis is laid on the relations of the activity intensity and biochemical transformation rate of aerobic bacteria (iron bacteria, Thiobacillus thioparus, halobacteria and manganese—oxidizing bacteria) and anaerobic bacteria (sulphate—reducing bacteria, denitrifying bacteria, Thiobacillus denitrificans) with mineralization. The experimental research on the migration and accumulation of ore-forming elements caused by microbial and chemical actions shows that the microbes have changed the conditions of oxidation and reduction in the system, and their effect on the element precipitation is much stronger than the chemical actions and accelerates the enrichment of Fe and Ma It demonstrates that the microbes can change the environment to promote the accumulation of ore-forming elements, thus leading to indirect mineralization.