The Hebei Xinji Barium Salt Group Co. Ltd is the largest barium salt production and export base in the world. Major products include Five Continents brand industrial barium carbonate, high purity barium carbonate, pre...The Hebei Xinji Barium Salt Group Co. Ltd is the largest barium salt production and export base in the world. Major products include Five Continents brand industrial barium carbonate, high purity barium carbonate, precipitated barium sulphate, barium nitrate, industrial sodium sulphide, industrial sulfur, sodium thiosulfate and sodium hydrosulphide. The annual output of barium salt is 120,000 tons, 2/3 for export. In 1995, the export value was US$20 million. As early as in 1953, its sodium sulphide began to be exported and re-展开更多
Hydroxyquinone compounds, such as 1,4-dihydroxyanthraquinone and alizarin sulfonate, are widely used in dye manufacturing, pharmaceutical manufacturing, and other industries. However, the treatment of hydroxyquinone-c...Hydroxyquinone compounds, such as 1,4-dihydroxyanthraquinone and alizarin sulfonate, are widely used in dye manufacturing, pharmaceutical manufacturing, and other industries. However, the treatment of hydroxyquinone-containing wastewater has seldom been examined. This study used a precipitation method with barium salt to treat nano-silver industrial wastewater. The results show that barium chloride was a suitable reagent for significantly degrading COD and color from nano-silver wastewater. When the initial pH value was 10.5, 8 g of BaCl2·2H2O were added to 100 mL of wastewater. After reaction at 15℃ for 1 h, the removal efficiencies of COD and color in the nano-silver wastewater were 85.6% and 97.1%, respectively. Simulated wastewater containing sodium alizarin-3-sulfonate (ARS) or purpurin was used to further investigate the removal mechanism of hydroxyquinone compounds. Fourier transform infrared spectroscopy, X-ray diffraction, and some related experiments showed that hydroxyquinone compounds can directly react with barium ions in the solution so as to transfer from wastewater to precipitate. In addition, the newly produced barium sulfate particles have positive surface charges, which can improve the removal efficiency of hydroxyquinone compounds due to electrostatic attraction.展开更多
Pr^(3+)-activated barium tungsto-molybdate solid solution phosphor Ba(Mo_(1-z)W_z)O_4:Pr^(3+)is successfully fabricated via a facile molten-salt approach. The as-synthesized microcrystal is of truncated oct...Pr^(3+)-activated barium tungsto-molybdate solid solution phosphor Ba(Mo_(1-z)W_z)O_4:Pr^(3+)is successfully fabricated via a facile molten-salt approach. The as-synthesized microcrystal is of truncated octahedron and exhibits deep-red-emitting upon blue light excitation. Powder x-ray diffraction and Raman spectroscopy techniques are utilized to investigate the formation of solid solution phosphor. The luminescence behaviors depend on the resulting composition of the microcrystals with fixed Pr^(3+)-doping concentration, while the host lattices remain in a scheelite structure. The forming solid solution via the substitution of [WO_4] for [MoO_4] can significantly enhance its luminescence, which may be due to the fact that Ba(Mo_(1-z)W_z)O_4:Pr^(3+)owns well-defined facets and uniform morphologies. Owing to its properties of high phase purity,well-defined facets, highly uniform morphologies, exceptional chemical and thermal stabilities, and stronger emission intensity, the resulting solid solution phosphor is expected to find potential applications in phosphor-converted white lightemitting diodes(LEDs).展开更多
A series of doped barium hexaferrites BaFe12-2xMnxSnxO19 (x = 0.0-1.0) particles were prepared by the co-precipitation/molten salt method. The particle size and crystalline of the samples BaFe12-2xMnxSnxO19 decrease...A series of doped barium hexaferrites BaFe12-2xMnxSnxO19 (x = 0.0-1.0) particles were prepared by the co-precipitation/molten salt method. The particle size and crystalline of the samples BaFe12-2xMnxSnxO19 decrease with an increase in the doping amount x. When x is less than 0.8, the pure BaFe12-2xMnxSnxO19 particles with hexagonal plate morphology are obtained. The effects of substitution on magnetic properties were evaluated and compared to nomal BaFe12O19. The specific magnetizations (Ms) of doped materials have been significantly improved. Among all these compositions, the BaFe10.4Mn0.8Sn0.8O19 sample has the highest Ms value of 81.8 A?m2?kg-1 at room temperature and its intrinsic coercivity (Hc) is 44.5 kA?m-1. The as-prepared doped barium ferrites exhibit a low temperature coefficient of coercivity close to zero. The coercivity is independent of temperature when x is in the a range 0.5-0.7.展开更多
文摘The Hebei Xinji Barium Salt Group Co. Ltd is the largest barium salt production and export base in the world. Major products include Five Continents brand industrial barium carbonate, high purity barium carbonate, precipitated barium sulphate, barium nitrate, industrial sodium sulphide, industrial sulfur, sodium thiosulfate and sodium hydrosulphide. The annual output of barium salt is 120,000 tons, 2/3 for export. In 1995, the export value was US$20 million. As early as in 1953, its sodium sulphide began to be exported and re-
基金supported by the National Natural Science Foundation of China(Grant No.51868029)the Yunnan Applied Basic Research Projects(Grant No.2016FB093)
文摘Hydroxyquinone compounds, such as 1,4-dihydroxyanthraquinone and alizarin sulfonate, are widely used in dye manufacturing, pharmaceutical manufacturing, and other industries. However, the treatment of hydroxyquinone-containing wastewater has seldom been examined. This study used a precipitation method with barium salt to treat nano-silver industrial wastewater. The results show that barium chloride was a suitable reagent for significantly degrading COD and color from nano-silver wastewater. When the initial pH value was 10.5, 8 g of BaCl2·2H2O were added to 100 mL of wastewater. After reaction at 15℃ for 1 h, the removal efficiencies of COD and color in the nano-silver wastewater were 85.6% and 97.1%, respectively. Simulated wastewater containing sodium alizarin-3-sulfonate (ARS) or purpurin was used to further investigate the removal mechanism of hydroxyquinone compounds. Fourier transform infrared spectroscopy, X-ray diffraction, and some related experiments showed that hydroxyquinone compounds can directly react with barium ions in the solution so as to transfer from wastewater to precipitate. In addition, the newly produced barium sulfate particles have positive surface charges, which can improve the removal efficiency of hydroxyquinone compounds due to electrostatic attraction.
基金Project supported by the Construction Fund for Science and Technology Innovation Group from Jiangsu University of Technology,Chinathe Key Laboratory of Atmospheric Environment Monitoring and Pollution Control,China(Grant No.KHK1409)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions,Chinathe National Natural Science Foundation of China(Grant No.21373103)
文摘Pr^(3+)-activated barium tungsto-molybdate solid solution phosphor Ba(Mo_(1-z)W_z)O_4:Pr^(3+)is successfully fabricated via a facile molten-salt approach. The as-synthesized microcrystal is of truncated octahedron and exhibits deep-red-emitting upon blue light excitation. Powder x-ray diffraction and Raman spectroscopy techniques are utilized to investigate the formation of solid solution phosphor. The luminescence behaviors depend on the resulting composition of the microcrystals with fixed Pr^(3+)-doping concentration, while the host lattices remain in a scheelite structure. The forming solid solution via the substitution of [WO_4] for [MoO_4] can significantly enhance its luminescence, which may be due to the fact that Ba(Mo_(1-z)W_z)O_4:Pr^(3+)owns well-defined facets and uniform morphologies. Owing to its properties of high phase purity,well-defined facets, highly uniform morphologies, exceptional chemical and thermal stabilities, and stronger emission intensity, the resulting solid solution phosphor is expected to find potential applications in phosphor-converted white lightemitting diodes(LEDs).
基金Funded by National Natural Science Foundation of China (Nos.20801016, 20701013, and 60971020)Postdoctoral Foundation of Heilongjiang Province(No. LRB07-231)Fundamental Research Funds for the Central Universities(No.HEUCF201210010)
文摘A series of doped barium hexaferrites BaFe12-2xMnxSnxO19 (x = 0.0-1.0) particles were prepared by the co-precipitation/molten salt method. The particle size and crystalline of the samples BaFe12-2xMnxSnxO19 decrease with an increase in the doping amount x. When x is less than 0.8, the pure BaFe12-2xMnxSnxO19 particles with hexagonal plate morphology are obtained. The effects of substitution on magnetic properties were evaluated and compared to nomal BaFe12O19. The specific magnetizations (Ms) of doped materials have been significantly improved. Among all these compositions, the BaFe10.4Mn0.8Sn0.8O19 sample has the highest Ms value of 81.8 A?m2?kg-1 at room temperature and its intrinsic coercivity (Hc) is 44.5 kA?m-1. The as-prepared doped barium ferrites exhibit a low temperature coefficient of coercivity close to zero. The coercivity is independent of temperature when x is in the a range 0.5-0.7.