The isolated hydrophilic black alder(Alnus glutinosa)bark extractives were characterized in terms of component and functional composition and converted at 150℃-170℃ into liquid green polyols using solvent-free and l...The isolated hydrophilic black alder(Alnus glutinosa)bark extractives were characterized in terms of component and functional composition and converted at 150℃-170℃ into liquid green polyols using solvent-free and lowtoxic base-catalyzed modification with propylene carbonate(PC).FTIR spectroscopy,HP-LC,GC,GPC,and wet chemistry methods were used to characterize the starting constituents,intermediate and final products of the reaction and to monitor the different pathways of PC conversion.The reaction of extractives as well as the model compounds,including catechol,xylose,PEG 400,and benzoic acid,with PC indicated the ability of OH groups of different origins present in the extractives to condense with equivalent amounts of PC.The polyols obtained consist of a copolymer fraction with one oxypropyl unit grafted per OH functionality of extractive components on average and oligo oxypropyl diols with a small number of carbonate linkages in the chain,obtained as a result of remaining PC homopolymerization.The domination of the oxypropylation mechanism vs.transcarbonation for PC ring opening was observed for both copolymerization and homopolymerization processes,making the process of oxypropylation with PC similar to that of conventional oxypropylation.At optimal reaction conditions,including a PC/OH ratio of 3.0 and a 24-h duration at 150°C,uniform polyols with low viscosity of~900 mPa·s^(-1),a biomass content of~27%,and an OHV of~500 mg KOH·g^(-1) were obtained.Increasing the temperature of modification allows shortening the process but drastically increases the polyol viscosity.At fixed temperature values,increasing the PC/OH ratio not only decreases the biomass content but also strongly prolongs the processing.The significantly increased duration of the process using PC as an alternative oxyalkylation agent compared to that of oxyalkylation with propylene oxide is a reasonable trade-off for using a safer and more environmentally friendly technology.展开更多
Extracts of plant origin,particularly tannins,are attracting growing interest for the sustainable development of materials in the industrial sector.The discovery of new tannins is therefore necessary.The aim of this w...Extracts of plant origin,particularly tannins,are attracting growing interest for the sustainable development of materials in the industrial sector.The discovery of new tannins is therefore necessary.The aim of this work was to contribute to the understanding of the properties of Paraberlinia bifoliolata tannin by Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectroscopy MALDI-TOF/MS and Carbon 13 Nuclear Magnetic Resonance(13C NMR).The chemical composition of tannin extracted from Paraberlinia bifoliolata bark was determined,as was the mechanical strength of the resin hardened with Acacia nilotica extracts.Yield by successive water extraction was 35%.MALDI-TOF/MS analysis revealed the presence of three new compounds in this tannin,previously unknown in this family of extracts.These are 3-hydroxyproline acid,N-methyl-4-hydroxypipecolic acid and N-methyl-5-dihydroxypipecolic acid.The identification of the above molecules means that this tannin can be used for industrial applications,as a resin in the manufacture of particleboard and in the formulation of green corrosion inhibitors.This information is reinforced by 13C NMR spectrometry,which indicates the presence of several polyflavonoid units,confirming the condensed nature of the tannin.Thermomechanical analysis of the resin formed by the purified tannin of Paraberlinia bifoliolata to which a vegetal biohardener has been added provided a Modulus of Elasticity(MOE)value of 4840 MPa at 150℃,confirming its possible use as a binder resin in the manufacture of wood panels as well as for the formulation of a corrosion inhibitor.展开更多
The chemical compositions of the dichloromethane extracts of inner and outer barks from six Pinus species(P.elliotii,P.oocarpa,P.caribeae,P.merkusii,P.montezumae,and P.insularis) grown in Indonesia were investigated...The chemical compositions of the dichloromethane extracts of inner and outer barks from six Pinus species(P.elliotii,P.oocarpa,P.caribeae,P.merkusii,P.montezumae,and P.insularis) grown in Indonesia were investigated by GC and GC–MS.Generally,the amounts of extractive contents were higher in the inner bark than in the outer bark except for P.merksuii.Fatty acids,monoterpenes,sesquiterpenes,resin acids,triterpenoids,and steroids were detected and quantified.Inner and outer barks differed not only in content of these compounds but also in their composition.Fatty acids and alcohols were the major classes of lipophilic compounds in the outer bark of P.caribeae, P.insularis,and P.montezumae.Steroids and triterpenoids were the dominant compounds identified in the inner bark of P.elliotii,P.insularis,and P.merkusii.Resin acids were the most abundant group in the inner bark of P.oocarpa whereas monoterpenes and sesquiterpenes were recorded in minor quantities in both bark layers of all species.展开更多
AIM: To study the effects of Pinus massoniana bark extract (PMBE) on cell proliferation and apoptosis of human hepatoma BEL-7402 cells and to elucidate its molecular mechanism.METHODS: BEL-7402 cells were incubated wi...AIM: To study the effects of Pinus massoniana bark extract (PMBE) on cell proliferation and apoptosis of human hepatoma BEL-7402 cells and to elucidate its molecular mechanism.METHODS: BEL-7402 cells were incubated with various concentrations (20-200 μg/mL) of PMBE for different periods of time. After 48 h, cell proliferation was determined by 3-(4,5-dimethyl-thiazolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) assay. Apoptosis was evaluated by morphological observation, agarose gel electrophoresis,and flow cytometry analysis. Possible molecular mechanisms were primarily explored through immunohistochemical staining.RESULTS: PMBE (20-200 μg/mL) significantly suppressed BEL-7402 cell proliferation in a time- and dose-dependent manner. After treatment of BEL-7402 cells with 160 μg/mL PMBE for 24, 48, or 72 h, a typical apoptotic 'DNA ladder'was observed using agarose gel electrophoresis. Nuclear condensation and boundary aggregation or split, apoptotic bodies were seen by fluorescence and electron microscopy.Sub-G1 curves were displayed by flow cytometry analysis.PMBE decreased the expression levels of Bcl-2 protein in a time-dependent manner after treatment of cells with 160 μg/mL PMBE.CONCLUSION: PMBE suppresses proliferation of BEL-7402 cells in a time- and dose-dependent manner and induces cell apoptosis by possibly downregulating the expression of the bcl-2 gene.展开更多
Objective: To outline the antibacterial, antioxidant, a-glucosidase inhibition and anticancer properties of Michelia nilagirica(M. nilagirica) bark extract.Methods: The antibacterial activity of bark extracts against ...Objective: To outline the antibacterial, antioxidant, a-glucosidase inhibition and anticancer properties of Michelia nilagirica(M. nilagirica) bark extract.Methods: The antibacterial activity of bark extracts against human pathogens was assessed by disc diffusion assay. Phytochemical screening, total phenols, flavonoids content, antioxidant and a-glucosidase inhibition properties of bark extracts were investigated by standard methods. In vitro anticancer activity of ethyl acetate extract at various concentrations was observed against Hep G2 cells using MTT [3-(4, 5-dimethyl thiazol-2 yl)-2,5-diphenyl tetrazolium bromide] assay. The presence of diverse bioactive constituents in the ethyl acetate extract was identified using FT-IR and GC–MS analysis.Results: Ethyl acetate extract was found to be the promising agent against human pathogens tested. The ethyl acetate extracts showed the presence of various phytochemicals and comprised the substantial content of phenolics and flavonoids. The ethyl acetate extract showed better antioxidant activities and also revealed remarkable reducing power ability and a-glucosidase inhibition property. The dose dependent assay of extract showed remarkable cancer cell death with IC_(50) value of(303.26 ± 2.30) mg/m L. FTIR and GC–MS results indicated the presence of major bioactive constituents in the ethyl acetate extract of M. nilagirica bark.Conclusions: Revealing the first report on in vitro biological properties and chemical composition analysis of M. nilagirica bark extract, our study implied that this plant could be of great importance in food and pharmaceutical industries.展开更多
[Objective]The paper was to study the improvement of poplar bark extract on intestinal Lactococcus lactis of white feather broilers.[Method]Totally 450 Ross 308 white-feather broilers were randomly divided into five g...[Objective]The paper was to study the improvement of poplar bark extract on intestinal Lactococcus lactis of white feather broilers.[Method]Totally 450 Ross 308 white-feather broilers were randomly divided into five groups:control group,low dose group,medium dose group,high dose group,and antibiotic group(oxytetracycline hydrochloride).The feeding duration was 45 d.The probiotics were screened and isolated through homology,and the physiological and biochemical characteristics of chicken intestinal bacteria in different groups were compared to determine the properties of bacterial strain.The drug resistance,antibacterial ability,proliferation ability,acid resistance and bile salt resistance of isolated strain were tested,and a strain of L.lactis was obtained.[Result]The isolated L.lactis was sensitive to other drugs except natural tetracyclines,and there was no significant difference among the four groups except oxytetracycline group;as the concentration of extract increased,the inhibition of L.lactis against Salmonella sp.increased;the medium dose extract had the largest increase in the ability to tolerate the proliferation of L.lactis.[Conclusion]Feeding poplar bark extract will produce positive effects on the physiological characters of intestinal L.lactis in broiler chicken,which will provide potential probiotic strain for chicken production.展开更多
Aim: In recent years, there has been a growing interest in researching and developing new antimicrobial agents from various sources to combat microbial resistance. The study was aimed at determining the phytochemical ...Aim: In recent years, there has been a growing interest in researching and developing new antimicrobial agents from various sources to combat microbial resistance. The study was aimed at determining the phytochemical constituents and in vitro antibacterial activity of methanol and aqueous extracts of Psidium guajava leaves and stem bark on Escherichia coli, Salmonella typhi, Staphylococcus aureus and Proteus sp. in Ugbokolo, Nigeria. Materials and Methods: The phytochemical screening of the plant materials for various bioactive components was conducted between July and December, 2019 using standard laboratory techniques. The extracts were purified using column chromatography. The identity of the test isolates were confirmed using morphological characteristics, gram stain, motility and appropriate biochemical tests such as indole, catalase, coagulase, triple sugar iron agar. The susceptibility of the isolates to each bioactive component was determined using the agar well diffusion method. The broth dilution method was employed for the determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the extracts. Results: The result of the study showed the presence of phenol, tannins, flavonoids and saponins as bioactive compounds. The antibacterial susceptibility of the isolates to aqueous and methanol extracts of leaf and stem bark of Psidium guajava varied significantly (P Staphylococcus aureus was the most susceptible isolate at 200 mg/ml concentration with average zone of inhibition of 13.05 mm for leaf extract and 15.34 mm for stem bark extract. Proteus sp. is the least susceptible with average zone of inhibition of 8.88 mm for the leaf extract and 12.36 mm for the stem bark extract respectively. Minimum Inhibitory Concentration and Minimum Bactericidal Concentration of aqueous and methanol extract of P. guajava leaf and stem bark showed that dilutions of various concentrations of aqueous and methanol extracts can inhibit and/or kill the isolates. Lower MIC (3.125 mg/ml) was shown by methanol extract than aqueous extract. MBC of methanol extract ranges between 6.25 - 25.0 mg/ml. Statistical analysis of the result showed methanol extract is more effective than aqueous extract while the stem bark of the plant showed higher efficacy than the leaf. Conclusion: The findings of the study imply that the extract of Psidium guajava has shown promising properties against tested microorganisms. Further study of the extract is therefore recommended.展开更多
High temperature heat-treatment of wood, which is value-added green product, is one of the altematives to chemical treatment. It has better dimensional stability, thermal insulating properties and biological resistanc...High temperature heat-treatment of wood, which is value-added green product, is one of the altematives to chemical treatment. It has better dimensional stability, thermal insulating properties and biological resistance compared to kiln dried wood. It also has dark brown color which is very important for decorative purposes. Unfortunately, this color changes during weathering. Developing a transparent and non-toxic coating for the protection of heat-treated wood against discoloration without changing its natural appearance is the main objective of this study. For this purpose, waterborne acrylic polyurethane base was chosen because of its durability against weathering and non-toxic nature. Natural antioxidants which are extracted from barks and CeO2 nano particles (alone or together with lignin stabilizer) were used as additives to develop different coatings. The protective characteristics of these coatings were compared with highly pigmented and toxic industrial coating under accelerated weathering conditions. The results showed that acrylic polyurethane coatings protected wood better compared to commercially available coating tested in this study. The chemical modifications during accelerated weathering of coated and heat-treated wood surfaces were monitored by X-ray photoelectron spectroscopy analysis. The morphological changes took place during weathering were studied by fluorescence microscope analysis.展开更多
AIM: To investigate the cytotoxicity, anti-inflammatory activity, and action mechanism of root bark extracts of Acanthopanax henryi. METHOD: The hot methanol extract of the root bark of A. henryi was subjected to XAD-...AIM: To investigate the cytotoxicity, anti-inflammatory activity, and action mechanism of root bark extracts of Acanthopanax henryi. METHOD: The hot methanol extract of the root bark of A. henryi was subjected to XAD-4 column chromatography eluting with a gradient of methanol in water. The cytotoxicity and anti-inflammatory effects of the MeOH fractions were evaluated on the inhibition on lipopolysaccharide(LPS)-induced nitric oxide, prostaglandin E2, interleukin-1β, and interleukin-6 production in RAW 264.7 macrophages. RESULTS: The 80% MeOH fraction was a better inhibitor of LPS-induced NO, PGE2, IL-1β, and IL-6 production, and expression of inducible nitric oxide synthase(iNOS) at the protein levels in a concentration-dependent manner. CONCLUSION: The 80% MeOH fraction of A. henryi root bark has significant anti-inflammatory activity. This provides a pharmacological basis for clinical application for the treatment of inflammation.展开更多
基金financial support from the Latvian Council of Science,Project No.lzp-2021/1-0207.
文摘The isolated hydrophilic black alder(Alnus glutinosa)bark extractives were characterized in terms of component and functional composition and converted at 150℃-170℃ into liquid green polyols using solvent-free and lowtoxic base-catalyzed modification with propylene carbonate(PC).FTIR spectroscopy,HP-LC,GC,GPC,and wet chemistry methods were used to characterize the starting constituents,intermediate and final products of the reaction and to monitor the different pathways of PC conversion.The reaction of extractives as well as the model compounds,including catechol,xylose,PEG 400,and benzoic acid,with PC indicated the ability of OH groups of different origins present in the extractives to condense with equivalent amounts of PC.The polyols obtained consist of a copolymer fraction with one oxypropyl unit grafted per OH functionality of extractive components on average and oligo oxypropyl diols with a small number of carbonate linkages in the chain,obtained as a result of remaining PC homopolymerization.The domination of the oxypropylation mechanism vs.transcarbonation for PC ring opening was observed for both copolymerization and homopolymerization processes,making the process of oxypropylation with PC similar to that of conventional oxypropylation.At optimal reaction conditions,including a PC/OH ratio of 3.0 and a 24-h duration at 150°C,uniform polyols with low viscosity of~900 mPa·s^(-1),a biomass content of~27%,and an OHV of~500 mg KOH·g^(-1) were obtained.Increasing the temperature of modification allows shortening the process but drastically increases the polyol viscosity.At fixed temperature values,increasing the PC/OH ratio not only decreases the biomass content but also strongly prolongs the processing.The significantly increased duration of the process using PC as an alternative oxyalkylation agent compared to that of oxyalkylation with propylene oxide is a reasonable trade-off for using a safer and more environmentally friendly technology.
基金supported by the Institut de la Francophonie pour le Developpement Durable(IFDD/Canada)/Projet de Deploiement des Technologies et Innovations Environnementales(PDTIE)funded by Organisation Internationale de la Francophonie(OIF)the Organisation of African,Caribbean and Pacific States and the European Union(EU)(FED/220/421-370)the Local Materials Promotion Authority(MIPROMALO)of the Ministry of Scientific Research and Innovation of Cameroon who made it possible for this scientific work to be carried out.
文摘Extracts of plant origin,particularly tannins,are attracting growing interest for the sustainable development of materials in the industrial sector.The discovery of new tannins is therefore necessary.The aim of this work was to contribute to the understanding of the properties of Paraberlinia bifoliolata tannin by Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectroscopy MALDI-TOF/MS and Carbon 13 Nuclear Magnetic Resonance(13C NMR).The chemical composition of tannin extracted from Paraberlinia bifoliolata bark was determined,as was the mechanical strength of the resin hardened with Acacia nilotica extracts.Yield by successive water extraction was 35%.MALDI-TOF/MS analysis revealed the presence of three new compounds in this tannin,previously unknown in this family of extracts.These are 3-hydroxyproline acid,N-methyl-4-hydroxypipecolic acid and N-methyl-5-dihydroxypipecolic acid.The identification of the above molecules means that this tannin can be used for industrial applications,as a resin in the manufacture of particleboard and in the formulation of green corrosion inhibitors.This information is reinforced by 13C NMR spectrometry,which indicates the presence of several polyflavonoid units,confirming the condensed nature of the tannin.Thermomechanical analysis of the resin formed by the purified tannin of Paraberlinia bifoliolata to which a vegetal biohardener has been added provided a Modulus of Elasticity(MOE)value of 4840 MPa at 150℃,confirming its possible use as a binder resin in the manufacture of wood panels as well as for the formulation of a corrosion inhibitor.
基金supported by JASSO(Japan Student Services Organization)DPP Grant 2016(Faculty of Forestry,UGM)
文摘The chemical compositions of the dichloromethane extracts of inner and outer barks from six Pinus species(P.elliotii,P.oocarpa,P.caribeae,P.merkusii,P.montezumae,and P.insularis) grown in Indonesia were investigated by GC and GC–MS.Generally,the amounts of extractive contents were higher in the inner bark than in the outer bark except for P.merksuii.Fatty acids,monoterpenes,sesquiterpenes,resin acids,triterpenoids,and steroids were detected and quantified.Inner and outer barks differed not only in content of these compounds but also in their composition.Fatty acids and alcohols were the major classes of lipophilic compounds in the outer bark of P.caribeae, P.insularis,and P.montezumae.Steroids and triterpenoids were the dominant compounds identified in the inner bark of P.elliotii,P.insularis,and P.merkusii.Resin acids were the most abundant group in the inner bark of P.oocarpa whereas monoterpenes and sesquiterpenes were recorded in minor quantities in both bark layers of all species.
文摘AIM: To study the effects of Pinus massoniana bark extract (PMBE) on cell proliferation and apoptosis of human hepatoma BEL-7402 cells and to elucidate its molecular mechanism.METHODS: BEL-7402 cells were incubated with various concentrations (20-200 μg/mL) of PMBE for different periods of time. After 48 h, cell proliferation was determined by 3-(4,5-dimethyl-thiazolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) assay. Apoptosis was evaluated by morphological observation, agarose gel electrophoresis,and flow cytometry analysis. Possible molecular mechanisms were primarily explored through immunohistochemical staining.RESULTS: PMBE (20-200 μg/mL) significantly suppressed BEL-7402 cell proliferation in a time- and dose-dependent manner. After treatment of BEL-7402 cells with 160 μg/mL PMBE for 24, 48, or 72 h, a typical apoptotic 'DNA ladder'was observed using agarose gel electrophoresis. Nuclear condensation and boundary aggregation or split, apoptotic bodies were seen by fluorescence and electron microscopy.Sub-G1 curves were displayed by flow cytometry analysis.PMBE decreased the expression levels of Bcl-2 protein in a time-dependent manner after treatment of cells with 160 μg/mL PMBE.CONCLUSION: PMBE suppresses proliferation of BEL-7402 cells in a time- and dose-dependent manner and induces cell apoptosis by possibly downregulating the expression of the bcl-2 gene.
基金supported by Rajiv Gandhi National Fellowship (RGNF-2013-14-ST-TAM-48307),University Grants Commission,Delhi,India
文摘Objective: To outline the antibacterial, antioxidant, a-glucosidase inhibition and anticancer properties of Michelia nilagirica(M. nilagirica) bark extract.Methods: The antibacterial activity of bark extracts against human pathogens was assessed by disc diffusion assay. Phytochemical screening, total phenols, flavonoids content, antioxidant and a-glucosidase inhibition properties of bark extracts were investigated by standard methods. In vitro anticancer activity of ethyl acetate extract at various concentrations was observed against Hep G2 cells using MTT [3-(4, 5-dimethyl thiazol-2 yl)-2,5-diphenyl tetrazolium bromide] assay. The presence of diverse bioactive constituents in the ethyl acetate extract was identified using FT-IR and GC–MS analysis.Results: Ethyl acetate extract was found to be the promising agent against human pathogens tested. The ethyl acetate extracts showed the presence of various phytochemicals and comprised the substantial content of phenolics and flavonoids. The ethyl acetate extract showed better antioxidant activities and also revealed remarkable reducing power ability and a-glucosidase inhibition property. The dose dependent assay of extract showed remarkable cancer cell death with IC_(50) value of(303.26 ± 2.30) mg/m L. FTIR and GC–MS results indicated the presence of major bioactive constituents in the ethyl acetate extract of M. nilagirica bark.Conclusions: Revealing the first report on in vitro biological properties and chemical composition analysis of M. nilagirica bark extract, our study implied that this plant could be of great importance in food and pharmaceutical industries.
基金Supported by Forestry Science and Technology Innovation and Promotion Project of Jiangsu Province(LYKJ[201N]46)Cultivation Project of Jiangsu Vocational College of Agriculture and Forestry(2018KJ27)Innovation and Entrepreneurs hi p Training Program for College Students"Assessment of Food Palatability of Pet Dogs and Cats"(20193103003Y).
文摘[Objective]The paper was to study the improvement of poplar bark extract on intestinal Lactococcus lactis of white feather broilers.[Method]Totally 450 Ross 308 white-feather broilers were randomly divided into five groups:control group,low dose group,medium dose group,high dose group,and antibiotic group(oxytetracycline hydrochloride).The feeding duration was 45 d.The probiotics were screened and isolated through homology,and the physiological and biochemical characteristics of chicken intestinal bacteria in different groups were compared to determine the properties of bacterial strain.The drug resistance,antibacterial ability,proliferation ability,acid resistance and bile salt resistance of isolated strain were tested,and a strain of L.lactis was obtained.[Result]The isolated L.lactis was sensitive to other drugs except natural tetracyclines,and there was no significant difference among the four groups except oxytetracycline group;as the concentration of extract increased,the inhibition of L.lactis against Salmonella sp.increased;the medium dose extract had the largest increase in the ability to tolerate the proliferation of L.lactis.[Conclusion]Feeding poplar bark extract will produce positive effects on the physiological characters of intestinal L.lactis in broiler chicken,which will provide potential probiotic strain for chicken production.
文摘Aim: In recent years, there has been a growing interest in researching and developing new antimicrobial agents from various sources to combat microbial resistance. The study was aimed at determining the phytochemical constituents and in vitro antibacterial activity of methanol and aqueous extracts of Psidium guajava leaves and stem bark on Escherichia coli, Salmonella typhi, Staphylococcus aureus and Proteus sp. in Ugbokolo, Nigeria. Materials and Methods: The phytochemical screening of the plant materials for various bioactive components was conducted between July and December, 2019 using standard laboratory techniques. The extracts were purified using column chromatography. The identity of the test isolates were confirmed using morphological characteristics, gram stain, motility and appropriate biochemical tests such as indole, catalase, coagulase, triple sugar iron agar. The susceptibility of the isolates to each bioactive component was determined using the agar well diffusion method. The broth dilution method was employed for the determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the extracts. Results: The result of the study showed the presence of phenol, tannins, flavonoids and saponins as bioactive compounds. The antibacterial susceptibility of the isolates to aqueous and methanol extracts of leaf and stem bark of Psidium guajava varied significantly (P Staphylococcus aureus was the most susceptible isolate at 200 mg/ml concentration with average zone of inhibition of 13.05 mm for leaf extract and 15.34 mm for stem bark extract. Proteus sp. is the least susceptible with average zone of inhibition of 8.88 mm for the leaf extract and 12.36 mm for the stem bark extract respectively. Minimum Inhibitory Concentration and Minimum Bactericidal Concentration of aqueous and methanol extract of P. guajava leaf and stem bark showed that dilutions of various concentrations of aqueous and methanol extracts can inhibit and/or kill the isolates. Lower MIC (3.125 mg/ml) was shown by methanol extract than aqueous extract. MBC of methanol extract ranges between 6.25 - 25.0 mg/ml. Statistical analysis of the result showed methanol extract is more effective than aqueous extract while the stem bark of the plant showed higher efficacy than the leaf. Conclusion: The findings of the study imply that the extract of Psidium guajava has shown promising properties against tested microorganisms. Further study of the extract is therefore recommended.
文摘High temperature heat-treatment of wood, which is value-added green product, is one of the altematives to chemical treatment. It has better dimensional stability, thermal insulating properties and biological resistance compared to kiln dried wood. It also has dark brown color which is very important for decorative purposes. Unfortunately, this color changes during weathering. Developing a transparent and non-toxic coating for the protection of heat-treated wood against discoloration without changing its natural appearance is the main objective of this study. For this purpose, waterborne acrylic polyurethane base was chosen because of its durability against weathering and non-toxic nature. Natural antioxidants which are extracted from barks and CeO2 nano particles (alone or together with lignin stabilizer) were used as additives to develop different coatings. The protective characteristics of these coatings were compared with highly pigmented and toxic industrial coating under accelerated weathering conditions. The results showed that acrylic polyurethane coatings protected wood better compared to commercially available coating tested in this study. The chemical modifications during accelerated weathering of coated and heat-treated wood surfaces were monitored by X-ray photoelectron spectroscopy analysis. The morphological changes took place during weathering were studied by fluorescence microscope analysis.
基金supported by the PhD Program Open Foundation of the Food and Drug Administration of KoreaHunan Provincial Natural Science Foundation(No.11JJ2042)+1 种基金the Science of Pharmaceutical Analysis of Twelfth Five-Year Key Discipline Projects of Hunan University of Chinese MedicineScience of Chinese Materia Medica of Twelfth Five-Year Key Discipline Projects of Hunan Province
文摘AIM: To investigate the cytotoxicity, anti-inflammatory activity, and action mechanism of root bark extracts of Acanthopanax henryi. METHOD: The hot methanol extract of the root bark of A. henryi was subjected to XAD-4 column chromatography eluting with a gradient of methanol in water. The cytotoxicity and anti-inflammatory effects of the MeOH fractions were evaluated on the inhibition on lipopolysaccharide(LPS)-induced nitric oxide, prostaglandin E2, interleukin-1β, and interleukin-6 production in RAW 264.7 macrophages. RESULTS: The 80% MeOH fraction was a better inhibitor of LPS-induced NO, PGE2, IL-1β, and IL-6 production, and expression of inducible nitric oxide synthase(iNOS) at the protein levels in a concentration-dependent manner. CONCLUSION: The 80% MeOH fraction of A. henryi root bark has significant anti-inflammatory activity. This provides a pharmacological basis for clinical application for the treatment of inflammation.