This study investigates the impact of the salinity barrier layer(BL)on the upper ocean response to Super Typhoon Mangkhut(2018)in the western North Pacific.After the passage of Mangkhut,a noticeable increase(~0.6 psu)...This study investigates the impact of the salinity barrier layer(BL)on the upper ocean response to Super Typhoon Mangkhut(2018)in the western North Pacific.After the passage of Mangkhut,a noticeable increase(~0.6 psu)in sea surface salinity and a weak decrease(<1℃)in sea surface temperature(SST)were observed on the right side of the typhoon track.Mangkhut-induced SST change can be divided into the three stages,corresponding to the variations in BL thickness and SST before,during,and after the passage of Mangkhut.During the pre-typhoon stage,SST slightly warmed due to the entrainment of BL warm water,which suppressed the cooling induced by surface heat fluxes and horizontal advection.During the forced stage,SST cooling was controlled by entrainment,and the preexisting BL reduced the total cooling by 0.89℃ d-1,thus significantly weakening the overall SST cooling induced by Mangkhut.During the relaxation stage,the SST cooling was primarily caused by the entrainment.Our results indicate that a preexisting BL can limit typhoon-induced SST cooling by suppressing the entrainment of cold thermocline water,which contributed to Mangkhut becoming the strongest typhoon in 2018.展开更多
It is found that the winter(December-February)barrier layer(BL)in the Bay of Bengal(BoB)acts as a dynamical thermostat,modulating the subsequent summer BoB sea surface temperature(SST)variability and potentially affec...It is found that the winter(December-February)barrier layer(BL)in the Bay of Bengal(BoB)acts as a dynamical thermostat,modulating the subsequent summer BoB sea surface temperature(SST)variability and potentially affecting the Indian summer monsoon(ISM)onset and associated rainfall variability.In the years when the prior winter BL is anomalously thick,anomalous sea surface cooling caused by intensified latent heat flux loss appears in the BoB starting in October and persists into the following year by positive cloud-SST feedback.During January-March,the vertical entrainment of warmer subsurface water induced by the anomalously thick BL acts to damp excessive cooling of the sea surface caused by atmospheric forcing and favors the development of deep atmospheric convection over the BoB.During March-May,the thinner mixed layer linked to the anomalously thick BL allows more shortwave radiation to penetrate below the mixed layer.This tends to maintain existing cold SST anomalies,advancing the onset of ISM and enhancing June ISM precipitation through an increase in the land-sea tropospheric thermal contrast.We also find that most of the coupled model intercomparison project phase 5(CMIP5)models fail to reproduce the observed relationship between June ISM rainfall and the prior winter BL thickness.This may be attributable to their difficulties in realistically simulating the winter BL in the BoB and ISM precipitation.The present results indicate that it is important to realistically capture the winter BL of the BoB in climate models for improving the simulation and prediction of ISM.展开更多
ABSTRACT In this paper, interannual variations in the barrier layer thickness (BLT) are analyzed using Argo three-dimensional temperature and salinity data, with a locus on the effects of interannually varying sali...ABSTRACT In this paper, interannual variations in the barrier layer thickness (BLT) are analyzed using Argo three-dimensional temperature and salinity data, with a locus on the effects of interannually varying salinity on the evolution of the El Nifio Southern Oscillation (ENSO). The interannually varying BLT exhibits a zonal seesaw pattern across the equatorial Pacific during ENSO cycles. This phenomenon has been attributed to two different physical processes. During E1 Nifio (La Nifia), the barrier layer (BL) is anomalously thin (thick) west of about 160°E, and thick (thin) to the east. In the western equatorial Pacific (the western part: 130°-160°E), interannual variations of the BLT indicate a lead of one year relative to those of the ENSO onset. The interannual variations of the BLT can be largely attributed to the interannual temperature variability, through its dominant effect on the isothermal layer depth (ILD). However, in the central equatorial Pacific (the eastern part: 160~E- 170~W), interannual variations of the BL almost synchronously vary with ENSO, with a lead of about two months relative to those of the local SST. In this region, the interannual variations of the BL are significantly affected by the interannually varying salinity, mainly through its modulation effect on the mixed layer depth (MLD). As evaluated by a onedimensional boundary layer ocean model, the BL around the dateline induced by interannual salinity anomalies can significantly affect the temperature fields in the upper ocean, indicating a positive feedback that acts to enhance ENSO.展开更多
Atomic layer deposition (ALD) technique is used in the preparation of organic/inorganic layers, which requires uniform surfaces with their thickness down to several nanometers. For film with such thickness, the grow...Atomic layer deposition (ALD) technique is used in the preparation of organic/inorganic layers, which requires uniform surfaces with their thickness down to several nanometers. For film with such thickness, the growth mode defined as the arrangement of clusters on the surface during the growth is of significance. In this work, Al2O3 thin film was deposited on various interfacial species of pre-treated polyethylene terephthalate (PET, 12 μm) by plasma assisted atomic layer deposition (PA-ALD), where trimethyl aluminium was used as the Al precursor and O2 as the oxygen source. The interracial species, -NH3, -OH, and -COOH as well as SiCHO (derived from monomer of HMDSO plasma), were grafted previously by plasma and chemical treatments. The growth mode of PA-ALD Al2O3 was then investigated in detail by combining results from in-situ diagnosis of spectroscopic ellipsometry (SE) and ex-situ characterization of as-deposited layers from the morphologies scanned by atomic force microscopy (AFM). In addition, the oxygen transmission rates (OTR) of the original and treated plastic films were measured. The possible reasons for the dependence of the OTR values on the surface species were explored.展开更多
Using data from Argo and simple ocean data assimilation (SODA), the role of the barrier layer (BL) in the southeastern Arabian Sea (SEAS: 60°E-75°E, 0°-10°N) is investigated during the development ...Using data from Argo and simple ocean data assimilation (SODA), the role of the barrier layer (BL) in the southeastern Arabian Sea (SEAS: 60°E-75°E, 0°-10°N) is investigated during the development of positive Indian Ocean Dipole (IOD) events from 1960 to 2008. It is found that warmer sea surface temperature (SST) in the northern Indian Ocean appears in June in the SEAS. This warm SST accompanying anomalous southeastern wind persists for six months and a thicker BL and a corresponding thinner mixed layer in the SEAS contribute to the SST warming during the IOD formation period. The excessive precipitation during this period helps to form a thicker BL and a thinner mixed layer, resulting in a higher SST in the SEAS. Warm SST in the SEAS and cold SST to the southeast of the SEAS intensify the southeasterly anomaly in the tropical Indian Ocean, which transports more moisture to the SEAS, and then induces more precipitation there. The ocean-atmosphere interaction process among wind, precipitation, BL and SST is very important for the anomalous warming in the SEAS during the development of positive IOD events.展开更多
As salinity stratification is necessary to form the barrier layer (BL), the quantification of its role in BL interannual variability is crucial. This study assessed salinity variability and its effect on the BL in t...As salinity stratification is necessary to form the barrier layer (BL), the quantification of its role in BL interannual variability is crucial. This study assessed salinity variability and its effect on the BL in the equatorial Pacific using outputs from Beijing Normal University Earth System Model (BNU-ESM) simulations. A comparison between observations and the BNU-ESM simulations demonstrated that BNU-ESM has good capability in reproducing most of the interannual features observed in nature. Despite some discrepancies in both magnitude and location of the interannual variability centers, the displacements of sea surface salinity (SSS), barrier layer thickness (BLT), and SST simulated by BNU-ESM in the equatorial Pacific are realistic. During E1 Nifio, for example, the modeled interannual anomalies of BLT, mixed layer depth, and isothermal layer depth, exhibit good correspondence with observations, including the development and decay of E1 Nifio in the central Pacific, whereas the intensity of the interannual variabilities is weaker relative to observations. Due to the bias in salinity simulations, the SSS front extends farther west along the equator, whereas BLT variability is weaker in the central Pacific than in observations. Further, the BNU-ESM simulations were examined to assess the relative effects of salinity and temperature variability on BLT. Consistent with previous observation-based analyses, the interannual salinity variability can make a significant contribution to BLT relative to temperature in the western-central equatorial Pacific.展开更多
This review describes the application of non-thermal plasma(NTP) technology for high barrier layer fabrication in packaging area.NTP technology is considered to be the most prospective approaches for the barrier lay...This review describes the application of non-thermal plasma(NTP) technology for high barrier layer fabrication in packaging area.NTP technology is considered to be the most prospective approaches for the barrier layer fabrication over the past decades due to unpollution,high speed,low-costing.The applications of NTP technology have achieved numerous exciting results in high barrier packaging area.Now it seemly demands a detailed review to summarize the past works and direct the future developments.This review focuses on the different NTP resources applied in the high barrier area,the role of plasma surface modification on packaging film surface properties,and the deposition of different barrier coatings based on NTP technology.In particular,this review emphasizes the cutting-edge technologies of NTP on interlayer deposition with organic,inorganic for multilayer barriers fabrication.The future prospects of NTP technology in high barrier film areas are also described.展开更多
In this paper, we use the conductivity-temperature-depth (CTD) observation data and a three-dimensional ocean model in a seasonally-varying forcing field to study the barrier layer (BL) in the PN section in the East C...In this paper, we use the conductivity-temperature-depth (CTD) observation data and a three-dimensional ocean model in a seasonally-varying forcing field to study the barrier layer (BL) in the PN section in the East China Sea (ECS). The BL can be found along the PN section with obviously seasonal variability. In winter, spring and autumn, the BL occurs around the slope where the cold shelf water meets with the warm Kuroshio water. In summer, the BL can also be found in the shelf area near salinity front of the Changjiang (Yangtze) River Dilution Water (YRDW). Seasonal variations of BL in the PN section are caused by local hydrological characteristics and seasonal variations of atmospheric forcing. Strong vertical convection caused by sea surface cooling thickens the BL in winter and spring in the slope area. Due to the large discharge of Changjiang River in summer, the BL occurs extensively in the shelf region where the fresh YRDW and the salty bottom water meet and form a strong halocline above the seasonal thermocline. The formation mechanism of BL in the PN section can be explained by the vertical shear of different water masses, which is called the advection mechanism. The interannual variation of BL in summer is greatly affected by the YRDW. In the larger YRDW year (such as 1998), a shallow but much thicker BL existed on the shelf area.展开更多
Interannual variability(IAV)in the barrier layer thickness(BLT)and forcing mechanisms in the eastern equatorial Indian Ocean(EEIO)and Bay of Bengal(BoB)are examined using monthly Argo data sets during 2002–2017.The B...Interannual variability(IAV)in the barrier layer thickness(BLT)and forcing mechanisms in the eastern equatorial Indian Ocean(EEIO)and Bay of Bengal(BoB)are examined using monthly Argo data sets during 2002–2017.The BLT during November–January(NDJ)in the EEIO shows strong IAV,which is associated with the Indian Ocean dipole mode(IOD),with the IOD leading the BLT by two months.During the negative IOD phase,the westerly wind anomalies driving the downwelling Kelvin waves increase the isothermal layer depth(ILD).Moreover,the variability in the mixed layer depth(MLD)is complex.Affected by the Wyrtki jet,the MLD presents negative anomalies west of 85°E and strong positive anomalies between 85°E and 93°E.Therefore,the BLT shows positive anomalies except between 86°E and 92°E in the EEIO.Additionally,the IAV in the BLT during December–February(DJF)in the BoB is also investigated.In the eastern and northeastern BoB,the IAV in the BLT is remotely forced by equatorial zonal wind stress anomalies associated with the El Ni?o-Southern Oscillation(ENSO).In the western BoB,the regional surface wind forcing-related ENSO modulates the BLT variations.展开更多
Rectangular Schottky drain AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with different gate contact areas and conventional AlGaN/AlN/GaN HFETs as control were both fabricated with same size. It was...Rectangular Schottky drain AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with different gate contact areas and conventional AlGaN/AlN/GaN HFETs as control were both fabricated with same size. It was found there is a significant difference between Schottky drain AlGaN/AlN/GaN HFETs and the control group both in drain series resistance and in two-dimensional electron gas (2DEG) electron mobility in the gate–drain channel. We attribute this to the different influence of Ohmic drain contacts and Schottky drain contacts on the strained AlGaN barrier layer. For conventional AlGaN/AlN/GaN HFETs, annealing drain Ohmic contacts gives rise to a strain variation in the AlGaN barrier layer between the gate contacts and the drain contacts, and results in strong polarization Coulomb field scattering in this region. In Schottky drain AlGaN/AlN/GaN HFETs, the strain in the AlGaN barrier layer is distributed more regularly.展开更多
Using the measured capacitance voltage curves and the photocurrent spectrum obtained from the Ni Schottky contact on a strained Al0.3Ga0.7N/GaN heterostructure, the value of the relative permittivity of the AlGaN barr...Using the measured capacitance voltage curves and the photocurrent spectrum obtained from the Ni Schottky contact on a strained Al0.3Ga0.7N/GaN heterostructure, the value of the relative permittivity of the AlGaN barrier layer was analysed and calculated by self-consistently solving SchrSdinger's and Poisson's equations. It is shown that the calculated values of the relative permittivity are different from those formerly reported, and reverse biasing the Ni Schottky contact has an influence on the value of the relative permittivity. As the reverse bias increases from 0 V to -3 V, the value of the relative permittivity decreases from 7.184 to 7.093.展开更多
The southeastern Indian Ocean is characterized by the warm barrier layer(BL)underlying the cool mixed layer water in austral winter.This phenomenon lasts almost half a year and thus provides a unique positive effect o...The southeastern Indian Ocean is characterized by the warm barrier layer(BL)underlying the cool mixed layer water in austral winter.This phenomenon lasts almost half a year and thus provides a unique positive effect on the upper mixed layer heat content through the entrainment processes at the base of the mixed layer,which has not been well evaluated due to the lack of proper method and dataset.Among various traditional threshold methods,here it is shown that the 5 m fixed depth difference can produce a reliable and accurate estimate of the entrainment heat flux(EHF)in this BL region.The comparison between the daily and monthly EHF warming indicates that the account for high-frequency EHF variability almost doubles the warming effect in the BL period,which can compensate for or even surpass the surface heat loss.This increased warming is a result of stronger relative rate of the mixed layer deepening and larger temperature differences between the mixed layer and its immediate below in the daily-resolving data.The interannual EHF shows a moderately increasing trend and similar variabilities to the Southern Annular Mode(SAM),likely because the mixed layer deepening under the positive SAM trend is accompanied by enhanced turbulent entrainment and thus increases the BL warming.展开更多
Ni Schottky contacts on A1GaN/CaN heterostructures were fabricated. Some samples were thermally treated in a furnace with N2 ambience at 600 ~C for different times (0.5 h, 4.5 h, 10.5 h, 18 h, 33 h, 48 h, and 72 h),...Ni Schottky contacts on A1GaN/CaN heterostructures were fabricated. Some samples were thermally treated in a furnace with N2 ambience at 600 ~C for different times (0.5 h, 4.5 h, 10.5 h, 18 h, 33 h, 48 h, and 72 h), the others were thermally treated for 0.5 h at different temperatures (500 ~C, 600 ~C, 700 ~C, and 800 ~C). With the measured current-voltage (I-V) and capacitance-voltage (C V) curves and by self-consistently solving Schrodinger's and Poisson's equations, we found that the relative permittivity of the A1GaN barrier layer was related to the piezoelectric and the spontaneous polarization of the A1GaN barrier layer. The relative permittivity was in proportion to the strain of the A1GaN barrier layer. The relative permittivity and the strain reduced with the increased thermal stress time until the A1GaN barrier totally relaxed (after 18 h at 600 ~C in the current study), and then the relative permittivity was almost a constant with the increased thermal strcss time. When the sample was treated at 800 ~C for 0.5 h, the relative permittivity was less than the constant due to the huge diffusion of the contact metal atoms. Considering the relation between the relative permittivity of the A1GaN barrier layer and the converse piezoelectric effect, the conclusion can be made that a moderate thermal stress can restrain the converse piezoelectric effect and can improve the stability of A1GaN/GaN heterostructure devices.展开更多
Time series measurements (2010–2017) from the Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction (RAMA) moorings at 15°N,90°E and 12°N,90°E are used to investigat...Time series measurements (2010–2017) from the Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction (RAMA) moorings at 15°N,90°E and 12°N,90°E are used to investigate the effect of the seasonal barrier layer (BL) on the mixed-layer heat budget in the Bay of Bengal (BoB).The mixed-layer temperature tendency (?T/?t) is primarily controlled by the net surface heat flux that remains in the mixed layer(Q’) from March to October,while both Q’and the vertical heat flux at the base of the mixed layer (Q_(h)),estimated as the residual of the mixed-layer heat budget,dominate during winter (November–February).An inverse relation is observed between the BL thickness and the mixed-layer temperature (MLT).Based on the estimations at the moorings,it is suggested that when the BL thickness is≥25 m,it exerts a considerable influence on ?T/?t through the modulation of Q_(h) (warming) in the BoB.The cooling associated with Q_(h) is strongest when the BL thickness is≤10 m with the MLT exceeding 29°C,while the contribution from Q_(h) remains nearly zero when the BL thickness varies between 10 m and 25 m.Temperature inversion is evident in the BoB during winter when the BL thickness remains≥25 m with an average MLT<28.5°C.Furthermore,Q_(h) follows the seasonal cycle of the BL at these RAMA mooring locations,with r>0.72 at the 95%significance level.展开更多
As indispensable components of superconducting circuit-based quantum computers,Josephson junctions determine how well superconducting qubits perform.Reverse Monte Carlo(RMC)can be used to recreate Josephson junction’...As indispensable components of superconducting circuit-based quantum computers,Josephson junctions determine how well superconducting qubits perform.Reverse Monte Carlo(RMC)can be used to recreate Josephson junction’s atomic structure based on experimental data,and the impact of the structure on junctions’properties can be investigated by combining different analysis techniques.In order to build a physical model of the atomic structure and then analyze the factors that affect its performance,this paper briefly reviews the development and evolution of the RMC algorithm.It also summarizes the modeling process and structural feature analysis of the Josephson junction in combination with different feature extraction techniques for electrical characterization devices.Additionally,the obstacles and potential directions of Josephson junction modeling,which serves as the theoretical foundation for the production of superconducting quantum devices at the atomic level,are discussed.展开更多
Positive bias temperature instability stress induced interface trap density in a buried InGaAs channel metaloxide-semiconductor field-effect transistor with a InCaP barrier layer and Al2O3 dielectric is investigated. ...Positive bias temperature instability stress induced interface trap density in a buried InGaAs channel metaloxide-semiconductor field-effect transistor with a InCaP barrier layer and Al2O3 dielectric is investigated. Well behaved split C-V characteristics with small capacitance frequency dispersion are confirmed after the insertion of the InCaP barrier layer. The direct-current Id-Vg measurements show both degradations of positive gate voltage shift and sub-threshold swing in the sub-threshold region, and degradation of positive △Vg in the oncurrent region. The Id-Vg degradation during the positive bias temperature instability tests is mainly contributed by the generation of near interface acceptor traps under stress. Specifically, the stress induced aeceptor traps contain both permanent and recoverable traps. Compared with surface channel InCaAs devices, stress induced recoverable donor traps are negligible in the buried channel ones.展开更多
According to Argo profiles and one-dimensional Price-Weller-Pinkel models, the oceanic barrier layer variation induced by tropical cyclones is adequately analyzed in the Northwest Pacific. Results show that tropical c...According to Argo profiles and one-dimensional Price-Weller-Pinkel models, the oceanic barrier layer variation induced by tropical cyclones is adequately analyzed in the Northwest Pacific. Results show that tropical cyclones mainly aff ect the oceanic barrier layer through intensifying and weakening pre-existed barrier layer. The former even may generate new one after tropical cyclones’ passage. The latter can make pre-existed one disappear. Local wind stress and precipitation, the dominant factors, primarily determine the variation of barrier layer. Negative eff ects of wind mainly focus on the north of 20°N. This phenomenon is more meaningful for slow tropical cyclones. Conversely, positive eff ects of wind and precipitation center on the south of 20°N in the Northwest Pacific. Some data indicate that the barrier layer variation is also closely related with initial mixed layer depth and barrier layer thickness.展开更多
Mg_(3)Sb_(2)-based thermoelectric materials have been the focus of widespread investigations as promising candidates for the harvesting of waste heat.Interface stability and service performance are key points for the ...Mg_(3)Sb_(2)-based thermoelectric materials have been the focus of widespread investigations as promising candidates for the harvesting of waste heat.Interface stability and service performance are key points for the commercial applications of these materials.We utilized Mg_(4.3)Sb_(3)Ni as a barrier layer to improve the thermal stability of Mg 3 Sb 2-based devices.However,its intrinsic high resistivity contributed nega-tively to the desired performance of the device.In this work,we investigated two other Mg-Sb-Ni ternary phases,MgSbNi and MgSbNi_(2),as new barrier layer materials to connect with Mg_(3.2)Sb_(2)Y_(0.05).The results show that the efficiency of the Mg_(1.2)SbNi/Mg_(3.2)Sb_(2)Y_(0.05)/Mg_(1.2)SbNi joint is increased by 33%relative to the higher Mg-content barriers due to lower resistivity.The system exhibited good interfacial compatibility and showed little change with aging at 673 K for 20 days.展开更多
Climatology of the isothermal layer depth (ILD) and the mixed layer depth (MLD) has been produced from in-situ temperaturesalinity observations in the East China Sea (ECS) since 1925. The methods applied on the ...Climatology of the isothermal layer depth (ILD) and the mixed layer depth (MLD) has been produced from in-situ temperaturesalinity observations in the East China Sea (ECS) since 1925. The methods applied on the global are used to compute the ILD and the MLD in the ECS with a temperature criterion AT=0. 8 ℃ for the ILD, and a density criterion with a threshold △σθ corresponding to fixed △T=0. 8 ℃ for the MLD, respectively. With the derived climatology ILD and MLD, the monthly variations of the barrier layer (BL) and the compensation layer (CL) in the ECS are analyzed. The BL mainly exists in the shallow water region of the ECS during April-June with thickness larger than 15 m. From December to next March, the area along the shelf break from northeast of Taiwan Island to the northeast ECS is characterized by the CL. Two kinds of main temperature - salinity structures of the CL in this area are given.展开更多
The multi-layer metals of Ni/AuGe/Pt/Au with a Pt diffusion barrier layer of ohmic contact to n-GaAs were studied. The surface morphology and ohmic contact resistivity of multi-layer metals were characterized, with an...The multi-layer metals of Ni/AuGe/Pt/Au with a Pt diffusion barrier layer of ohmic contact to n-GaAs were studied. The surface morphology and ohmic contact resistivity of multi-layer metals were characterized, with and without the Pt diffusion barrier layer for comparison. The SEM and EDS measurements show the Pt diffusion barrier layer can block the interdiffusion of atoms in multi-layer metals, and improve the surface morphology. The TLM results show that the samples with a Pt diffusion barrier layer have uniform ohmic contact resistance, indicating that the Pt diffusion barrier layer can increase the repetition and uniformity of ohmic contact to n-GaAs, and improve the thermal stability and reliability of GaAs-based devices.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42176015)the National Natural Science Foundation of China(Grant No.41605070)+3 种基金the National Key Research and Development Program(Grant No.2021YFC3101500)the Hunan Provincial Natural Science Outstanding Youth Fund(Grant No.2023JJ10053)the Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311022001)a project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.SML2021SP207)。
文摘This study investigates the impact of the salinity barrier layer(BL)on the upper ocean response to Super Typhoon Mangkhut(2018)in the western North Pacific.After the passage of Mangkhut,a noticeable increase(~0.6 psu)in sea surface salinity and a weak decrease(<1℃)in sea surface temperature(SST)were observed on the right side of the typhoon track.Mangkhut-induced SST change can be divided into the three stages,corresponding to the variations in BL thickness and SST before,during,and after the passage of Mangkhut.During the pre-typhoon stage,SST slightly warmed due to the entrainment of BL warm water,which suppressed the cooling induced by surface heat fluxes and horizontal advection.During the forced stage,SST cooling was controlled by entrainment,and the preexisting BL reduced the total cooling by 0.89℃ d-1,thus significantly weakening the overall SST cooling induced by Mangkhut.During the relaxation stage,the SST cooling was primarily caused by the entrainment.Our results indicate that a preexisting BL can limit typhoon-induced SST cooling by suppressing the entrainment of cold thermocline water,which contributed to Mangkhut becoming the strongest typhoon in 2018.
基金The Postgraduate Research and Practice Innovation Program of Jiangsu Province under contract No.KYCX22_0587the Fundamental Research Funds for the Central Universities under contract No.B230205012.
文摘It is found that the winter(December-February)barrier layer(BL)in the Bay of Bengal(BoB)acts as a dynamical thermostat,modulating the subsequent summer BoB sea surface temperature(SST)variability and potentially affecting the Indian summer monsoon(ISM)onset and associated rainfall variability.In the years when the prior winter BL is anomalously thick,anomalous sea surface cooling caused by intensified latent heat flux loss appears in the BoB starting in October and persists into the following year by positive cloud-SST feedback.During January-March,the vertical entrainment of warmer subsurface water induced by the anomalously thick BL acts to damp excessive cooling of the sea surface caused by atmospheric forcing and favors the development of deep atmospheric convection over the BoB.During March-May,the thinner mixed layer linked to the anomalously thick BL allows more shortwave radiation to penetrate below the mixed layer.This tends to maintain existing cold SST anomalies,advancing the onset of ISM and enhancing June ISM precipitation through an increase in the land-sea tropospheric thermal contrast.We also find that most of the coupled model intercomparison project phase 5(CMIP5)models fail to reproduce the observed relationship between June ISM rainfall and the prior winter BL thickness.This may be attributable to their difficulties in realistically simulating the winter BL in the BoB and ISM precipitation.The present results indicate that it is important to realistically capture the winter BL of the BoB in climate models for improving the simulation and prediction of ISM.
基金supported by the National Basic Research Program of China (Grant No.2012CB955202)the National Natural Science Foundation of China (Grant No.41176014)
文摘ABSTRACT In this paper, interannual variations in the barrier layer thickness (BLT) are analyzed using Argo three-dimensional temperature and salinity data, with a locus on the effects of interannually varying salinity on the evolution of the El Nifio Southern Oscillation (ENSO). The interannually varying BLT exhibits a zonal seesaw pattern across the equatorial Pacific during ENSO cycles. This phenomenon has been attributed to two different physical processes. During E1 Nifio (La Nifia), the barrier layer (BL) is anomalously thin (thick) west of about 160°E, and thick (thin) to the east. In the western equatorial Pacific (the western part: 130°-160°E), interannual variations of the BLT indicate a lead of one year relative to those of the ENSO onset. The interannual variations of the BLT can be largely attributed to the interannual temperature variability, through its dominant effect on the isothermal layer depth (ILD). However, in the central equatorial Pacific (the eastern part: 160~E- 170~W), interannual variations of the BL almost synchronously vary with ENSO, with a lead of about two months relative to those of the local SST. In this region, the interannual variations of the BL are significantly affected by the interannually varying salinity, mainly through its modulation effect on the mixed layer depth (MLD). As evaluated by a onedimensional boundary layer ocean model, the BL around the dateline induced by interannual salinity anomalies can significantly affect the temperature fields in the upper ocean, indicating a positive feedback that acts to enhance ENSO.
基金supported by National Natural Science Foundation of China (No.11175024)Beijing Natural Science Foundation (No.1112012),2011BAD24B01+1 种基金Scientific Research Common Program of Beijing Municipal Commission of Education(KM201110015008,KM201010015005)Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under theJurisdiction of Beijing Municipality (PHR20110516)
文摘Atomic layer deposition (ALD) technique is used in the preparation of organic/inorganic layers, which requires uniform surfaces with their thickness down to several nanometers. For film with such thickness, the growth mode defined as the arrangement of clusters on the surface during the growth is of significance. In this work, Al2O3 thin film was deposited on various interfacial species of pre-treated polyethylene terephthalate (PET, 12 μm) by plasma assisted atomic layer deposition (PA-ALD), where trimethyl aluminium was used as the Al precursor and O2 as the oxygen source. The interracial species, -NH3, -OH, and -COOH as well as SiCHO (derived from monomer of HMDSO plasma), were grafted previously by plasma and chemical treatments. The growth mode of PA-ALD Al2O3 was then investigated in detail by combining results from in-situ diagnosis of spectroscopic ellipsometry (SE) and ex-situ characterization of as-deposited layers from the morphologies scanned by atomic force microscopy (AFM). In addition, the oxygen transmission rates (OTR) of the original and treated plastic films were measured. The possible reasons for the dependence of the OTR values on the surface species were explored.
基金supported by the National Basic Research Program of China(2012CB955602)Ministry of Science and Technology of China(National Key Program for Developing Basic Science 2010CB428904)+1 种基金the NSFC(41176006,40921004,41106010)the 111 Project of China(Program of Introducing Talents of Discipline to Universities No.B07036)
文摘Using data from Argo and simple ocean data assimilation (SODA), the role of the barrier layer (BL) in the southeastern Arabian Sea (SEAS: 60°E-75°E, 0°-10°N) is investigated during the development of positive Indian Ocean Dipole (IOD) events from 1960 to 2008. It is found that warmer sea surface temperature (SST) in the northern Indian Ocean appears in June in the SEAS. This warm SST accompanying anomalous southeastern wind persists for six months and a thicker BL and a corresponding thinner mixed layer in the SEAS contribute to the SST warming during the IOD formation period. The excessive precipitation during this period helps to form a thicker BL and a thinner mixed layer, resulting in a higher SST in the SEAS. Warm SST in the SEAS and cold SST to the southeast of the SEAS intensify the southeasterly anomaly in the tropical Indian Ocean, which transports more moisture to the SEAS, and then induces more precipitation there. The ocean-atmosphere interaction process among wind, precipitation, BL and SST is very important for the anomalous warming in the SEAS during the development of positive IOD events.
基金supported by the National Natural Science Foundation of China(Grant Nos.41376039,41376019 and 41421005)the NSFC-Shandong Joint Fund for Marine Science Research Centers(Grant No.U1406401)+1 种基金the IOCAS through the CAS Strategic Priority Project[the Western Pacific Ocean System(WPOS)]the WPOS in the "Strategic Priority Research Program" of the Chinese Academy of Sciences(Grant No.XDA11010304)
文摘As salinity stratification is necessary to form the barrier layer (BL), the quantification of its role in BL interannual variability is crucial. This study assessed salinity variability and its effect on the BL in the equatorial Pacific using outputs from Beijing Normal University Earth System Model (BNU-ESM) simulations. A comparison between observations and the BNU-ESM simulations demonstrated that BNU-ESM has good capability in reproducing most of the interannual features observed in nature. Despite some discrepancies in both magnitude and location of the interannual variability centers, the displacements of sea surface salinity (SSS), barrier layer thickness (BLT), and SST simulated by BNU-ESM in the equatorial Pacific are realistic. During E1 Nifio, for example, the modeled interannual anomalies of BLT, mixed layer depth, and isothermal layer depth, exhibit good correspondence with observations, including the development and decay of E1 Nifio in the central Pacific, whereas the intensity of the interannual variabilities is weaker relative to observations. Due to the bias in salinity simulations, the SSS front extends farther west along the equator, whereas BLT variability is weaker in the central Pacific than in observations. Further, the BNU-ESM simulations were examined to assess the relative effects of salinity and temperature variability on BLT. Consistent with previous observation-based analyses, the interannual salinity variability can make a significant contribution to BLT relative to temperature in the western-central equatorial Pacific.
基金financially supported by National Natural Science Foundation of China (Nos.11505013,11775028)Beijing Municipal Excellent Talent Training Foundation (No.2016000026833ZK12)+2 种基金Science and Technology Innovational Serviceability Building Project of Beijing Municipal Education Commission (No.PXM2017_014223_000066)Excellent Talent Selection and Training Project of BIGC of China (No.04190117004/026)Institute level project of BIGC of China (No.Eb201502)
文摘This review describes the application of non-thermal plasma(NTP) technology for high barrier layer fabrication in packaging area.NTP technology is considered to be the most prospective approaches for the barrier layer fabrication over the past decades due to unpollution,high speed,low-costing.The applications of NTP technology have achieved numerous exciting results in high barrier packaging area.Now it seemly demands a detailed review to summarize the past works and direct the future developments.This review focuses on the different NTP resources applied in the high barrier area,the role of plasma surface modification on packaging film surface properties,and the deposition of different barrier coatings based on NTP technology.In particular,this review emphasizes the cutting-edge technologies of NTP on interlayer deposition with organic,inorganic for multilayer barriers fabrication.The future prospects of NTP technology in high barrier film areas are also described.
基金Supported by National Basic Research Program of China (973 Program, No. 2005CB422303 and 2007CB411804)the Key Project of the International Science and Technology Cooperation Program of China (No. 2006DFB21250)+1 种基金the "111 Project" of the Ministry of Education (No. B07036)the Program for New Century Excellent Talents in University, China (No. NECT-07-0781)
文摘In this paper, we use the conductivity-temperature-depth (CTD) observation data and a three-dimensional ocean model in a seasonally-varying forcing field to study the barrier layer (BL) in the PN section in the East China Sea (ECS). The BL can be found along the PN section with obviously seasonal variability. In winter, spring and autumn, the BL occurs around the slope where the cold shelf water meets with the warm Kuroshio water. In summer, the BL can also be found in the shelf area near salinity front of the Changjiang (Yangtze) River Dilution Water (YRDW). Seasonal variations of BL in the PN section are caused by local hydrological characteristics and seasonal variations of atmospheric forcing. Strong vertical convection caused by sea surface cooling thickens the BL in winter and spring in the slope area. Due to the large discharge of Changjiang River in summer, the BL occurs extensively in the shelf region where the fresh YRDW and the salty bottom water meet and form a strong halocline above the seasonal thermocline. The formation mechanism of BL in the PN section can be explained by the vertical shear of different water masses, which is called the advection mechanism. The interannual variation of BL in summer is greatly affected by the YRDW. In the larger YRDW year (such as 1998), a shallow but much thicker BL existed on the shelf area.
基金The National Key R&D Program of China under contract No.2018YFA0605702the National Natural Science Foundation of China under contract Nos 41522601,41876002 and 41876224the Fundamental Research Funds for the Central Universities under contract Nos 2017B04714 and 2017B4114。
文摘Interannual variability(IAV)in the barrier layer thickness(BLT)and forcing mechanisms in the eastern equatorial Indian Ocean(EEIO)and Bay of Bengal(BoB)are examined using monthly Argo data sets during 2002–2017.The BLT during November–January(NDJ)in the EEIO shows strong IAV,which is associated with the Indian Ocean dipole mode(IOD),with the IOD leading the BLT by two months.During the negative IOD phase,the westerly wind anomalies driving the downwelling Kelvin waves increase the isothermal layer depth(ILD).Moreover,the variability in the mixed layer depth(MLD)is complex.Affected by the Wyrtki jet,the MLD presents negative anomalies west of 85°E and strong positive anomalies between 85°E and 93°E.Therefore,the BLT shows positive anomalies except between 86°E and 92°E in the EEIO.Additionally,the IAV in the BLT during December–February(DJF)in the BoB is also investigated.In the eastern and northeastern BoB,the IAV in the BLT is remotely forced by equatorial zonal wind stress anomalies associated with the El Ni?o-Southern Oscillation(ENSO).In the western BoB,the regional surface wind forcing-related ENSO modulates the BLT variations.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11174182)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110131110005)
文摘Rectangular Schottky drain AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with different gate contact areas and conventional AlGaN/AlN/GaN HFETs as control were both fabricated with same size. It was found there is a significant difference between Schottky drain AlGaN/AlN/GaN HFETs and the control group both in drain series resistance and in two-dimensional electron gas (2DEG) electron mobility in the gate–drain channel. We attribute this to the different influence of Ohmic drain contacts and Schottky drain contacts on the strained AlGaN barrier layer. For conventional AlGaN/AlN/GaN HFETs, annealing drain Ohmic contacts gives rise to a strain variation in the AlGaN barrier layer between the gate contacts and the drain contacts, and results in strong polarization Coulomb field scattering in this region. In Schottky drain AlGaN/AlN/GaN HFETs, the strain in the AlGaN barrier layer is distributed more regularly.
基金supported by the National Natural Science Foundation of China (Grant No 10774090)the National Basic Research Program of China (Grant No 2007CB936602)
文摘Using the measured capacitance voltage curves and the photocurrent spectrum obtained from the Ni Schottky contact on a strained Al0.3Ga0.7N/GaN heterostructure, the value of the relative permittivity of the AlGaN barrier layer was analysed and calculated by self-consistently solving SchrSdinger's and Poisson's equations. It is shown that the calculated values of the relative permittivity are different from those formerly reported, and reverse biasing the Ni Schottky contact has an influence on the value of the relative permittivity. As the reverse bias increases from 0 V to -3 V, the value of the relative permittivity decreases from 7.184 to 7.093.
基金The National Natural Science Foundation of China under contract No.42276003the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University under contract No.SL2021MS021.
文摘The southeastern Indian Ocean is characterized by the warm barrier layer(BL)underlying the cool mixed layer water in austral winter.This phenomenon lasts almost half a year and thus provides a unique positive effect on the upper mixed layer heat content through the entrainment processes at the base of the mixed layer,which has not been well evaluated due to the lack of proper method and dataset.Among various traditional threshold methods,here it is shown that the 5 m fixed depth difference can produce a reliable and accurate estimate of the entrainment heat flux(EHF)in this BL region.The comparison between the daily and monthly EHF warming indicates that the account for high-frequency EHF variability almost doubles the warming effect in the BL period,which can compensate for or even surpass the surface heat loss.This increased warming is a result of stronger relative rate of the mixed layer deepening and larger temperature differences between the mixed layer and its immediate below in the daily-resolving data.The interannual EHF shows a moderately increasing trend and similar variabilities to the Southern Annular Mode(SAM),likely because the mixed layer deepening under the positive SAM trend is accompanied by enhanced turbulent entrainment and thus increases the BL warming.
基金Project supported by the National Natural Science Foundation of China (Grant No.10774090)the National Basic Research Program of China (Grant No.2007CB936602)
文摘Ni Schottky contacts on A1GaN/CaN heterostructures were fabricated. Some samples were thermally treated in a furnace with N2 ambience at 600 ~C for different times (0.5 h, 4.5 h, 10.5 h, 18 h, 33 h, 48 h, and 72 h), the others were thermally treated for 0.5 h at different temperatures (500 ~C, 600 ~C, 700 ~C, and 800 ~C). With the measured current-voltage (I-V) and capacitance-voltage (C V) curves and by self-consistently solving Schrodinger's and Poisson's equations, we found that the relative permittivity of the A1GaN barrier layer was related to the piezoelectric and the spontaneous polarization of the A1GaN barrier layer. The relative permittivity was in proportion to the strain of the A1GaN barrier layer. The relative permittivity and the strain reduced with the increased thermal stress time until the A1GaN barrier totally relaxed (after 18 h at 600 ~C in the current study), and then the relative permittivity was almost a constant with the increased thermal strcss time. When the sample was treated at 800 ~C for 0.5 h, the relative permittivity was less than the constant due to the huge diffusion of the contact metal atoms. Considering the relation between the relative permittivity of the A1GaN barrier layer and the converse piezoelectric effect, the conclusion can be made that a moderate thermal stress can restrain the converse piezoelectric effect and can improve the stability of A1GaN/GaN heterostructure devices.
基金The Strategic Priority Research Program of Chinese Academy of Sciences under contract No.XDA 20060502the National Natural Science Foundation of China under contract Nos 41976016, 42076021 and 41521005+4 种基金the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory under contract No.GML2019ZD0306the Guangdong Basic and Applied Basic Research Foundation under contract No.2021A1515011534the Grant for Innovation Academy of South China Sea Ecology and Environmental Engineering,Chinese Academy of Sciences under contract No.ISEE2021ZD01the Grant for State Key Laboratory of Tropical OceanographySouth China Sea Institute of Oceanology under contract No.LTOZZ2002。
文摘Time series measurements (2010–2017) from the Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction (RAMA) moorings at 15°N,90°E and 12°N,90°E are used to investigate the effect of the seasonal barrier layer (BL) on the mixed-layer heat budget in the Bay of Bengal (BoB).The mixed-layer temperature tendency (?T/?t) is primarily controlled by the net surface heat flux that remains in the mixed layer(Q’) from March to October,while both Q’and the vertical heat flux at the base of the mixed layer (Q_(h)),estimated as the residual of the mixed-layer heat budget,dominate during winter (November–February).An inverse relation is observed between the BL thickness and the mixed-layer temperature (MLT).Based on the estimations at the moorings,it is suggested that when the BL thickness is≥25 m,it exerts a considerable influence on ?T/?t through the modulation of Q_(h) (warming) in the BoB.The cooling associated with Q_(h) is strongest when the BL thickness is≤10 m with the MLT exceeding 29°C,while the contribution from Q_(h) remains nearly zero when the BL thickness varies between 10 m and 25 m.Temperature inversion is evident in the BoB during winter when the BL thickness remains≥25 m with an average MLT<28.5°C.Furthermore,Q_(h) follows the seasonal cycle of the BL at these RAMA mooring locations,with r>0.72 at the 95%significance level.
基金This paper is supported by the Major Science and Technology Projects of Henan Province under Grant No.221100210400.
文摘As indispensable components of superconducting circuit-based quantum computers,Josephson junctions determine how well superconducting qubits perform.Reverse Monte Carlo(RMC)can be used to recreate Josephson junction’s atomic structure based on experimental data,and the impact of the structure on junctions’properties can be investigated by combining different analysis techniques.In order to build a physical model of the atomic structure and then analyze the factors that affect its performance,this paper briefly reviews the development and evolution of the RMC algorithm.It also summarizes the modeling process and structural feature analysis of the Josephson junction in combination with different feature extraction techniques for electrical characterization devices.Additionally,the obstacles and potential directions of Josephson junction modeling,which serves as the theoretical foundation for the production of superconducting quantum devices at the atomic level,are discussed.
基金Supported by the National Science and Technology Major Project of China under Grant No 2011ZX02708-003the National Natural Science Foundation of China under Grant No 61504165the Opening Project of Key Laboratory of Microelectronics Devices and Integrated Technology of Institute of Microelectronics of Chinese Academy of Sciences
文摘Positive bias temperature instability stress induced interface trap density in a buried InGaAs channel metaloxide-semiconductor field-effect transistor with a InCaP barrier layer and Al2O3 dielectric is investigated. Well behaved split C-V characteristics with small capacitance frequency dispersion are confirmed after the insertion of the InCaP barrier layer. The direct-current Id-Vg measurements show both degradations of positive gate voltage shift and sub-threshold swing in the sub-threshold region, and degradation of positive △Vg in the oncurrent region. The Id-Vg degradation during the positive bias temperature instability tests is mainly contributed by the generation of near interface acceptor traps under stress. Specifically, the stress induced aeceptor traps contain both permanent and recoverable traps. Compared with surface channel InCaAs devices, stress induced recoverable donor traps are negligible in the buried channel ones.
基金Supported by the National Program on Global Change and Air-Sea Interaction(No.GASI-IPOVAI-04)the National Key Research and Development Program of China(No.2017YFC1404000)the National Natural Science Foundation of China(No.41276001)
文摘According to Argo profiles and one-dimensional Price-Weller-Pinkel models, the oceanic barrier layer variation induced by tropical cyclones is adequately analyzed in the Northwest Pacific. Results show that tropical cyclones mainly aff ect the oceanic barrier layer through intensifying and weakening pre-existed barrier layer. The former even may generate new one after tropical cyclones’ passage. The latter can make pre-existed one disappear. Local wind stress and precipitation, the dominant factors, primarily determine the variation of barrier layer. Negative eff ects of wind mainly focus on the north of 20°N. This phenomenon is more meaningful for slow tropical cyclones. Conversely, positive eff ects of wind and precipitation center on the south of 20°N in the Northwest Pacific. Some data indicate that the barrier layer variation is also closely related with initial mixed layer depth and barrier layer thickness.
基金supported by the National Science Foundation of China(Grant No.52202277)the Special Project of Science and Technology Cooperation and Exchange of Shanxi Province(Grant No.202104041101007).
文摘Mg_(3)Sb_(2)-based thermoelectric materials have been the focus of widespread investigations as promising candidates for the harvesting of waste heat.Interface stability and service performance are key points for the commercial applications of these materials.We utilized Mg_(4.3)Sb_(3)Ni as a barrier layer to improve the thermal stability of Mg 3 Sb 2-based devices.However,its intrinsic high resistivity contributed nega-tively to the desired performance of the device.In this work,we investigated two other Mg-Sb-Ni ternary phases,MgSbNi and MgSbNi_(2),as new barrier layer materials to connect with Mg_(3.2)Sb_(2)Y_(0.05).The results show that the efficiency of the Mg_(1.2)SbNi/Mg_(3.2)Sb_(2)Y_(0.05)/Mg_(1.2)SbNi joint is increased by 33%relative to the higher Mg-content barriers due to lower resistivity.The system exhibited good interfacial compatibility and showed little change with aging at 673 K for 20 days.
基金The National Natural Science Foundation of China under contract Nos40776018 and 40730842the National Basic Research Program of China under contract No.2007CB816002
文摘Climatology of the isothermal layer depth (ILD) and the mixed layer depth (MLD) has been produced from in-situ temperaturesalinity observations in the East China Sea (ECS) since 1925. The methods applied on the global are used to compute the ILD and the MLD in the ECS with a temperature criterion AT=0. 8 ℃ for the ILD, and a density criterion with a threshold △σθ corresponding to fixed △T=0. 8 ℃ for the MLD, respectively. With the derived climatology ILD and MLD, the monthly variations of the barrier layer (BL) and the compensation layer (CL) in the ECS are analyzed. The BL mainly exists in the shallow water region of the ECS during April-June with thickness larger than 15 m. From December to next March, the area along the shelf break from northeast of Taiwan Island to the northeast ECS is characterized by the CL. Two kinds of main temperature - salinity structures of the CL in this area are given.
基金Project supported by the National Natural Science Foundation of China(No.11474036)the National Key Laboratory of High Power Semiconductor Lasers Foundations(No.9140C310103120C31114)
文摘The multi-layer metals of Ni/AuGe/Pt/Au with a Pt diffusion barrier layer of ohmic contact to n-GaAs were studied. The surface morphology and ohmic contact resistivity of multi-layer metals were characterized, with and without the Pt diffusion barrier layer for comparison. The SEM and EDS measurements show the Pt diffusion barrier layer can block the interdiffusion of atoms in multi-layer metals, and improve the surface morphology. The TLM results show that the samples with a Pt diffusion barrier layer have uniform ohmic contact resistance, indicating that the Pt diffusion barrier layer can increase the repetition and uniformity of ohmic contact to n-GaAs, and improve the thermal stability and reliability of GaAs-based devices.