期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Approximate solution of Volterra-Fredholm integral equations using generalized barycentric rational interpolant
1
作者 Hadis Azin Fakhrodin Mohammadi 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第2期220-238,共19页
It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollab... It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollable poles and low convergence order.In contrast with the classical rational interpolants,the generalized barycentric rational interpolants which depend linearly on the interpolated values,yield infinite smooth approximation with no poles in real numbers.In this paper,a numerical collocation approach,based on the generalized barycentric rational interpolation and Gaussian quadrature formula,was introduced to approximate the solution of Volterra-Fredholm integral equations.Three types of points in the solution domain are used as interpolation nodes.The obtained numerical results confirm that the barycentric rational interpolants are efficient tools for solving Volterra-Fredholm integral equations.Moreover,integral equations with Runge’s function as an exact solution,no oscillation occurrs in the obtained approximate solutions so that the Runge’s phenomenon is avoided. 展开更多
关键词 barycentric rational interpolation Volterra-Fredholm integral equations Gaussian quadrature Runge's phenomenon
下载PDF
General Interpolation Formulae for Barycentric Blending Interpolation
2
作者 Yigang Zhang 《Analysis in Theory and Applications》 CSCD 2016年第1期65-77,共13页
General interpolation formulae for barycentric interpolation and barycen- tric rational Hermite interpolation are established by introducing multiple parameters, which include many kinds of barycentric interpolation a... General interpolation formulae for barycentric interpolation and barycen- tric rational Hermite interpolation are established by introducing multiple parameters, which include many kinds of barycentric interpolation and barycentric rational Her- mite interpolation. We discussed the interpolation theorem, dual interpolation and special cases. Numerical example is given to show the effectiveness of the method. 展开更多
关键词 General interpolation formulae of interpolation barycentric interpolation barycentric rational Hermite interpolation.
下载PDF
High-precision stress determination in photoelasticity 被引量:1
3
作者 Zikang XU Yongsheng HAN +3 位作者 Hongliang SHAO Zhilong SU Ge HE Dongsheng ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第4期557-570,共14页
Stress separation is usually achieved by solving differential equations of equilibrium after parameter determination from isochromatics and isoclinics.The numerical error resulting from the stress determination is a m... Stress separation is usually achieved by solving differential equations of equilibrium after parameter determination from isochromatics and isoclinics.The numerical error resulting from the stress determination is a main concern as it is always a function of parameters in discretization.To improve the accuracy of stress calculation,a novel meshless barycentric rational interpolation collocation method(BRICM)is proposed.The derivatives of the shear stress on the calculation path are determined by using the differential matrix which converts the differential form of the equations of equilibrium into a series of algebraic equations.The advantage of the proposed method is that the auxiliary lines,grids,and error accumulation which are commonly used in traditional shear difference methods(SDMs)are not required.Simulation and experimental results indicate that the proposed meshless method is able to provide high computational accuracy in the full-field stress determination. 展开更多
关键词 PHOTOELASTICITY stress determination barycentric rational interpolation collocation method differential matrix
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部