Glued timber structure is one of the main forms of modern wood architecture,which has gradually developed towards mid-and high-rise buildings.Glue-laminated timber(GLT)is comprised of several laminates of parallel-to-...Glued timber structure is one of the main forms of modern wood architecture,which has gradually developed towards mid-and high-rise buildings.Glue-laminated timber(GLT)is comprised of several laminates of parallel-to-grain dimension lumber that are bonded together with durable,moisture resistant structural adhesives.GLT can be used in horizontal applications as a beam and in vertical applications as a post.So,its compressive performance has a significant impact on structural safety.Fiber reinforced polymers(FRPs)were commonly used to improve the bearing capacity of GLT components,and the structural and process parameters largely determined the reinforcement effect.This study was aimed at investigating the influence of structural and process parameters on the axial compression performance of GLT components.Three wrapping methods(middle-part,end-part and full wrapping)and three lengths(0.6,0.8,and 1.0 m)of wood post specimens were designed in this work and the axial compression performance and ductility of GLT post specimens modified by basalt fiber reinforced polymer(BFRP)were studied.The results showed that the effect of different BFRP wrapping methods on the compressive strength and elastic modulus of laminated wood was not statistically significant(P>0.05).The compressive bearing capacity of unreinforced GLT posts decreased with the increase of aspect ratio.The GLT posts with middle-part and end-part wrapping still followed this pattern,while the compressive bearing capacity of GLT posts with full wrapping showed a pattern of first decreasing and then increasing.For GLT with low aspect ratios(4.0 or 5.3),there was no correlation between the wrapping method and the compressive bearing capacity,while the compressive bearing capacity of GLT with a high aspect ratio(6.7)for middle-part,end-part and full wrapping increased by 3.5%,7.5%and 9.7%,respectively.Compared to the unreinforced group,the ultimate axial compressive strength and modulus of elasticity(MOE)of the 6-E series specimens reinforced at both ends decreased by 2.58%and 6.70%,respectively.The ultimate axial compressive strength of the 8-E specimens reinforced at both ends increased by 8.62%and the MOE decreased by 1.91%.The compressive strength of the 10-E specimens reinforced at both ends increased by 7.51%and the MOE increased by 8.14%.The failure modes of GLT with different aspects were consistent under the same BFRP wrapping,while the failure modes of GLT with the same aspect ratio were different for different BFRP wrapping methods.The ductility performance of GLT with different aspects ratio was improved by the BFRP wrapping.展开更多
The development of recycled aggregate concrete(RAC)provides a new approach to limiting the waste of natural resources.In the present study,the mechanical properties and deformability of RACs were improved by adding ba...The development of recycled aggregate concrete(RAC)provides a new approach to limiting the waste of natural resources.In the present study,the mechanical properties and deformability of RACs were improved by adding basalt fibers(BFs)and using external restraints,such as a fiber-reinforced polymer(FRP)jacket or a PVC pipe.Samples were tested under axial compression.The results showed that RAC(50%replacement of aggregate)containing 0.2%BFs had the best mechanical properties.Using either BFs or PVC reinforcement had a slight effect on the loadbearing capacity and mode of failure.With different levels of BFs,the compressive strengths of the specimens reinforced with 1-layer and 3-layer basalt fiber reinforced polymer(BFRP)increased by 6.7%–10.5%and 16.5%–23.7%,respectively,and the ultimate strains increased by 48.5%–80.7%and 97.1%–141.1%,respectively.The peak stress of the 3-layer BFRP-PVC increased by 42.2%,and the ultimate strain improved by 131.3%,relative to the control.This reinforcement combined the high tensile strength of BFRP,which improved the post-peak behavior,and PVC,which enhanced the structural durability.In addition,to investigate the influence of the various constraints on compressive behavior,the stress-strain response was analyzed.Based on the analysis of experimental results,a peak stress-strain model and an amended ultimate stress-strain model were proposed.The models were verified as well;the result showed that the predictions from calculations are generally consistent with the experimental data(error within 10%).The results of this study provide a theoretical basis and reference for future applications of fiber-reinforced recycled concrete.展开更多
The high-strength Basalt Carbon Fiber Reinforced Polymer(BCFRP)composites had been manufactured by guiding Imitating Tree-root Micro/Nano Aramid Short Fiber(ITMNASF)into the interlayer of Basalt Fiber(BF)and Carbon Fi...The high-strength Basalt Carbon Fiber Reinforced Polymer(BCFRP)composites had been manufactured by guiding Imitating Tree-root Micro/Nano Aramid Short Fiber(ITMNASF)into the interlayer of Basalt Fiber(BF)and Carbon Fiber(CF)plies to form thin interleaving,and various mass proportions of IT-MNASF were designed to discuss the reinforcing effect on the BCFRP heterogeneous composites.The results of three points bending tests showed that flexural strength and energy absorption of 4wt%IT-MNASF reinforced BCFRP heterogeneous composites had been improved by 32.4%and 134.4%respectively compared with that of unreinforced specimens.The 4wt%IT-MNASF reinforced BCFRP specimens showed both a greater strength and a lower cost(reduced by 31%around)than that of plain CFRP composites.X-ray micro-computed tomography scanning results exhibited that the delamination-dominated failure of plain BCFRP composites was changed into multi-layer BF and CF fabrics damage.The reinforcing mechanism revealed that the introduced IT-MNASF could construct quasi-vertical fiber bridging,and it was used as"mechanical claws"to grasp adjacent fiber layers for creating a stronger mechanical interlocking,and this effectively improved resin-rich region and interfacial transition region at the interlayers.The simple and effective IT-MNASF interleaving technique was very successful in low-cost and high-strength development of BCFRP heterogeneous composites.展开更多
This paper presents experimental and analytical investigations on concrete beams reinforced with basalt fiber reinforced polymer(BFRP)and steel fibers without stirrups.Independent behaviour of BFRP reinforced beams an...This paper presents experimental and analytical investigations on concrete beams reinforced with basalt fiber reinforced polymer(BFRP)and steel fibers without stirrups.Independent behaviour of BFRP reinforced beams and steel fiber reinforced beams were evaluated and the effect of combining BFRP bars and steel fiber was investigated in detail.It is found that combining s teel fibers with BFRP could change the shear failure of BFRP reinforced beam to flexural failure.Further,the existing analytical models were reviewed and compared to predict the shear strength of both FRP reinforced and steel fiber reinforced beams.Based on the review,the appropriate model was chosen and modified to predict the shear strength of BFRP reinforced beam along with steel fibers.展开更多
Reinforced concrete (RC) beams externally bonded with basalt fiber reinforced polymer (BFRP) are experimentally investigated by using different numbers of bonding plies, transverse anchorages as well as the initia...Reinforced concrete (RC) beams externally bonded with basalt fiber reinforced polymer (BFRP) are experimentally investigated by using different numbers of bonding plies, transverse anchorages as well as the initial conditions of strengthened beams. The performances of the BFRP strengthening are compared with those of the carbon fiber reinforced polymer (CFRP) and the glass fiber reinforced polymer (GFRP) under the same experimental condition. Experimental results indicate that the strength and ductility of the strengthened beam with two plies of the BFRP are improved remarkably than those with one ply. The strengthening effects of the BFRP lie between those of the CFRP and the GFRP. The BFRP strengthening is little influenced by pre-cracks of concrete. Most failures are caused by interfaciai debonding induced by flexural cracks in the experiment. Clamping of Uwraps along the whole beam is less efficient than endpoint anchorage for increasing the ultimate load of the strengthened beam. Finally, the models suggested by the five guidelines for predicting the debonding strain of the CFRP are extended to the BFRP and the conservative estimates of the debonding strain of the BFRP are given as well.展开更多
Basalt Fiber Reinforced Polymer(BFRP)composites have huge potential application respects for some civil fields due to enough strength/modulus to weight and low cost by replacing carbon fiber composites.Aiming at the i...Basalt Fiber Reinforced Polymer(BFRP)composites have huge potential application respects for some civil fields due to enough strength/modulus to weight and low cost by replacing carbon fiber composites.Aiming at the issues in the Resin-Rich Region(RRR)and Interfacial Transition Region(ITR)of fiber reinforced polymer composites,the characteristic Aramid Pulp(AP)fibers with micro-fiber trunk and nano-fiber branches were manufactured into multiple non-woven ultra-thin interleaving at the interlayers of BFRP composites via compression molding to reinforce the flexural strengths and elastic moduli.AP fibers were introduced into RRR to form interleaving at the interlayer,the brittle epoxy adhesive layer was improved and enabled to avoid cracking under a low external load.Free fiber branches of AP were also embedded into BF layer to construct quasi-vertical fiber bridging behaviors in ITR,stronger mechanical interlocking was created to prevent crack propagation along the bonding interface of BF/epoxy.Three-point bending testing results showed the interleaving film with 4 g/m^(2)AP exhibited the best effect among various areal densities and yielded average 315.75 MPa in flexural strength and 21.38 GPa in elastic modulus,having a 63.4%increment and a 47.1%increment respectively compared with the bases.Overall,the simple and low-cost AP interleaving is confirmed as an effective method in improving interlayer structure and flexural performance of BFRP composites,which may be considered to manufacture high-performance laminated fiber reinforced polymer composites in civil aviation industry.展开更多
In this study,a novel diagonally inserted bar-type basalt fiber reinforced polymer(BFRP)connector was proposed,aiming to achieve both construction convenience and partially composite behavior in precast concrete sandw...In this study,a novel diagonally inserted bar-type basalt fiber reinforced polymer(BFRP)connector was proposed,aiming to achieve both construction convenience and partially composite behavior in precast concrete sandwich panels(PCSPs).First,pull-out tests were conducted to evaluate the anchoring performance of the connector in concrete after exposure to different temperatures.Thereafter,direct shear tests were conducted to investigate the shear performance of the connector.After the test on the individual performance of the connector,five façade PCSP specimens with the bar-type BFRP connector were fabricated,and the out-of-plane flexural performance was tested under a uniformly distributed load.The investigating parameters included the panel length,opening condition,and boundary condition.The results obtained in this study primarily indicated that 1)the bar-type BFRP connector can achieve a reliable anchorage system in concrete;2)the bar-type BFRP connector can offer sufficient stiffness and capacity to achieve a partially composite PCSP;3)the boundary condition of the panel considerably influenced the out-of-plane flexural performance and composite action of the investigated façade PCSP.展开更多
This paper presents an experimental study on the alkali-resistant properties of basalt fiber reinforced polymers (BFRP) bars under a typical concrete environment. BFRP bars were embedded in concrete and exposed to d...This paper presents an experimental study on the alkali-resistant properties of basalt fiber reinforced polymers (BFRP) bars under a typical concrete environment. BFRP bars were embedded in concrete and exposed to different aggressive environments, including tap water, saline solution and ambient temperature environments, to study the effects of the type of solution and relative humidity (RH) on the durability of BFRP. Meanwhile, BFRP bars were directly immersed in an alkaline solution for comparison. The acceleration factor describing the relationship between the alkaline solution immersion and the moisture-saturated concrete was also obtained. Aging was accelerated with a temperature of 60 ℃. The results show that the chloridion in the saline solution does not have any harmful effects on the degradation of the concrete-encased BFRP bars. Contact with an alkaline (high pH) concrete pore-water solution is the primary reason for the degradation of the BFRP bars. The degradation rate of concrete-encased BFRP bars is accelerated when a high temperature and a high humidity are present simultaneously. The degradation rate of the BFRP bars is relatively quick at the initial stage and slows down with exposure time. Results show that the degradation of 2.18 years in moisture-saturated concrete at 60 ℃corresponds to that of one year when directly immersed in an alkaline solution (other conditions remaining the same) for the BFRP bars analyzed.展开更多
文摘Glued timber structure is one of the main forms of modern wood architecture,which has gradually developed towards mid-and high-rise buildings.Glue-laminated timber(GLT)is comprised of several laminates of parallel-to-grain dimension lumber that are bonded together with durable,moisture resistant structural adhesives.GLT can be used in horizontal applications as a beam and in vertical applications as a post.So,its compressive performance has a significant impact on structural safety.Fiber reinforced polymers(FRPs)were commonly used to improve the bearing capacity of GLT components,and the structural and process parameters largely determined the reinforcement effect.This study was aimed at investigating the influence of structural and process parameters on the axial compression performance of GLT components.Three wrapping methods(middle-part,end-part and full wrapping)and three lengths(0.6,0.8,and 1.0 m)of wood post specimens were designed in this work and the axial compression performance and ductility of GLT post specimens modified by basalt fiber reinforced polymer(BFRP)were studied.The results showed that the effect of different BFRP wrapping methods on the compressive strength and elastic modulus of laminated wood was not statistically significant(P>0.05).The compressive bearing capacity of unreinforced GLT posts decreased with the increase of aspect ratio.The GLT posts with middle-part and end-part wrapping still followed this pattern,while the compressive bearing capacity of GLT posts with full wrapping showed a pattern of first decreasing and then increasing.For GLT with low aspect ratios(4.0 or 5.3),there was no correlation between the wrapping method and the compressive bearing capacity,while the compressive bearing capacity of GLT with a high aspect ratio(6.7)for middle-part,end-part and full wrapping increased by 3.5%,7.5%and 9.7%,respectively.Compared to the unreinforced group,the ultimate axial compressive strength and modulus of elasticity(MOE)of the 6-E series specimens reinforced at both ends decreased by 2.58%and 6.70%,respectively.The ultimate axial compressive strength of the 8-E specimens reinforced at both ends increased by 8.62%and the MOE decreased by 1.91%.The compressive strength of the 10-E specimens reinforced at both ends increased by 7.51%and the MOE increased by 8.14%.The failure modes of GLT with different aspects were consistent under the same BFRP wrapping,while the failure modes of GLT with the same aspect ratio were different for different BFRP wrapping methods.The ductility performance of GLT with different aspects ratio was improved by the BFRP wrapping.
基金supported by the Natural Science Foundation Project of Liaoning Provincial Department of Education of China under Grant No.JJL201915404,Zhejiang Provincial Natural Science Foundation of China under Grant No.LQ22E080024 and Zhejiang Province Department of Education Fund of China under Grant No.Y202146776.
文摘The development of recycled aggregate concrete(RAC)provides a new approach to limiting the waste of natural resources.In the present study,the mechanical properties and deformability of RACs were improved by adding basalt fibers(BFs)and using external restraints,such as a fiber-reinforced polymer(FRP)jacket or a PVC pipe.Samples were tested under axial compression.The results showed that RAC(50%replacement of aggregate)containing 0.2%BFs had the best mechanical properties.Using either BFs or PVC reinforcement had a slight effect on the loadbearing capacity and mode of failure.With different levels of BFs,the compressive strengths of the specimens reinforced with 1-layer and 3-layer basalt fiber reinforced polymer(BFRP)increased by 6.7%–10.5%and 16.5%–23.7%,respectively,and the ultimate strains increased by 48.5%–80.7%and 97.1%–141.1%,respectively.The peak stress of the 3-layer BFRP-PVC increased by 42.2%,and the ultimate strain improved by 131.3%,relative to the control.This reinforcement combined the high tensile strength of BFRP,which improved the post-peak behavior,and PVC,which enhanced the structural durability.In addition,to investigate the influence of the various constraints on compressive behavior,the stress-strain response was analyzed.Based on the analysis of experimental results,a peak stress-strain model and an amended ultimate stress-strain model were proposed.The models were verified as well;the result showed that the predictions from calculations are generally consistent with the experimental data(error within 10%).The results of this study provide a theoretical basis and reference for future applications of fiber-reinforced recycled concrete.
基金Supported financially by the National Natural Science Foundation of China(No.52102115)the High-end Foreign Expert Recruitment Plan of China(No.G2023036002L)+2 种基金the Natural Science Foundation of Sichuan Province,China(No.2023NSFSC0961)Shock and Vibration of Engineering Materials and Structures Key Lab of Sichuan Province,China(No.23kfgk06)the Postgraduate Innovation Fund Project by Southwest University of Science and Technology,China(No.24ycx2027).
文摘The high-strength Basalt Carbon Fiber Reinforced Polymer(BCFRP)composites had been manufactured by guiding Imitating Tree-root Micro/Nano Aramid Short Fiber(ITMNASF)into the interlayer of Basalt Fiber(BF)and Carbon Fiber(CF)plies to form thin interleaving,and various mass proportions of IT-MNASF were designed to discuss the reinforcing effect on the BCFRP heterogeneous composites.The results of three points bending tests showed that flexural strength and energy absorption of 4wt%IT-MNASF reinforced BCFRP heterogeneous composites had been improved by 32.4%and 134.4%respectively compared with that of unreinforced specimens.The 4wt%IT-MNASF reinforced BCFRP specimens showed both a greater strength and a lower cost(reduced by 31%around)than that of plain CFRP composites.X-ray micro-computed tomography scanning results exhibited that the delamination-dominated failure of plain BCFRP composites was changed into multi-layer BF and CF fabrics damage.The reinforcing mechanism revealed that the introduced IT-MNASF could construct quasi-vertical fiber bridging,and it was used as"mechanical claws"to grasp adjacent fiber layers for creating a stronger mechanical interlocking,and this effectively improved resin-rich region and interfacial transition region at the interlayers.The simple and effective IT-MNASF interleaving technique was very successful in low-cost and high-strength development of BCFRP heterogeneous composites.
文摘This paper presents experimental and analytical investigations on concrete beams reinforced with basalt fiber reinforced polymer(BFRP)and steel fibers without stirrups.Independent behaviour of BFRP reinforced beams and steel fiber reinforced beams were evaluated and the effect of combining BFRP bars and steel fiber was investigated in detail.It is found that combining s teel fibers with BFRP could change the shear failure of BFRP reinforced beam to flexural failure.Further,the existing analytical models were reviewed and compared to predict the shear strength of both FRP reinforced and steel fiber reinforced beams.Based on the review,the appropriate model was chosen and modified to predict the shear strength of BFRP reinforced beam along with steel fibers.
文摘Reinforced concrete (RC) beams externally bonded with basalt fiber reinforced polymer (BFRP) are experimentally investigated by using different numbers of bonding plies, transverse anchorages as well as the initial conditions of strengthened beams. The performances of the BFRP strengthening are compared with those of the carbon fiber reinforced polymer (CFRP) and the glass fiber reinforced polymer (GFRP) under the same experimental condition. Experimental results indicate that the strength and ductility of the strengthened beam with two plies of the BFRP are improved remarkably than those with one ply. The strengthening effects of the BFRP lie between those of the CFRP and the GFRP. The BFRP strengthening is little influenced by pre-cracks of concrete. Most failures are caused by interfaciai debonding induced by flexural cracks in the experiment. Clamping of Uwraps along the whole beam is less efficient than endpoint anchorage for increasing the ultimate load of the strengthened beam. Finally, the models suggested by the five guidelines for predicting the debonding strain of the CFRP are extended to the BFRP and the conservative estimates of the debonding strain of the BFRP are given as well.
基金supported financially by the National Natural Science Foundations of China(No.52102115)the Overseas High-End Talent Introduction Project of Sichuan Province,China(No.2023JDGD0013)the Natural Science Foundations of Sichuan Province,China(No.2023NSFSC0961)。
文摘Basalt Fiber Reinforced Polymer(BFRP)composites have huge potential application respects for some civil fields due to enough strength/modulus to weight and low cost by replacing carbon fiber composites.Aiming at the issues in the Resin-Rich Region(RRR)and Interfacial Transition Region(ITR)of fiber reinforced polymer composites,the characteristic Aramid Pulp(AP)fibers with micro-fiber trunk and nano-fiber branches were manufactured into multiple non-woven ultra-thin interleaving at the interlayers of BFRP composites via compression molding to reinforce the flexural strengths and elastic moduli.AP fibers were introduced into RRR to form interleaving at the interlayer,the brittle epoxy adhesive layer was improved and enabled to avoid cracking under a low external load.Free fiber branches of AP were also embedded into BF layer to construct quasi-vertical fiber bridging behaviors in ITR,stronger mechanical interlocking was created to prevent crack propagation along the bonding interface of BF/epoxy.Three-point bending testing results showed the interleaving film with 4 g/m^(2)AP exhibited the best effect among various areal densities and yielded average 315.75 MPa in flexural strength and 21.38 GPa in elastic modulus,having a 63.4%increment and a 47.1%increment respectively compared with the bases.Overall,the simple and low-cost AP interleaving is confirmed as an effective method in improving interlayer structure and flexural performance of BFRP composites,which may be considered to manufacture high-performance laminated fiber reinforced polymer composites in civil aviation industry.
基金financially supported by the National Natural Science Foundation of China(Grant No.51878233)the Fundamental Research Funds for the Central Universities(No.JZ2021HGTA0164)+1 种基金the Key Research and Development Project of Anhui Province,China(No.202104a07020022)from Anhui Provincial Natural Science Foundation(No.2208085QE172).
文摘In this study,a novel diagonally inserted bar-type basalt fiber reinforced polymer(BFRP)connector was proposed,aiming to achieve both construction convenience and partially composite behavior in precast concrete sandwich panels(PCSPs).First,pull-out tests were conducted to evaluate the anchoring performance of the connector in concrete after exposure to different temperatures.Thereafter,direct shear tests were conducted to investigate the shear performance of the connector.After the test on the individual performance of the connector,five façade PCSP specimens with the bar-type BFRP connector were fabricated,and the out-of-plane flexural performance was tested under a uniformly distributed load.The investigating parameters included the panel length,opening condition,and boundary condition.The results obtained in this study primarily indicated that 1)the bar-type BFRP connector can achieve a reliable anchorage system in concrete;2)the bar-type BFRP connector can offer sufficient stiffness and capacity to achieve a partially composite PCSP;3)the boundary condition of the panel considerably influenced the out-of-plane flexural performance and composite action of the investigated façade PCSP.
基金The National Key Basic Research Program of China(973 Program)(No.2012CB026200)the Key Project of Chinese Ministry of Education(No.113029A)+1 种基金the National Key Technology R&D Program of China during the 12th Five Year Plan Period(No.2011BAB03B09)the Fundamental Research Funds for the Central Universities
文摘This paper presents an experimental study on the alkali-resistant properties of basalt fiber reinforced polymers (BFRP) bars under a typical concrete environment. BFRP bars were embedded in concrete and exposed to different aggressive environments, including tap water, saline solution and ambient temperature environments, to study the effects of the type of solution and relative humidity (RH) on the durability of BFRP. Meanwhile, BFRP bars were directly immersed in an alkaline solution for comparison. The acceleration factor describing the relationship between the alkaline solution immersion and the moisture-saturated concrete was also obtained. Aging was accelerated with a temperature of 60 ℃. The results show that the chloridion in the saline solution does not have any harmful effects on the degradation of the concrete-encased BFRP bars. Contact with an alkaline (high pH) concrete pore-water solution is the primary reason for the degradation of the BFRP bars. The degradation rate of concrete-encased BFRP bars is accelerated when a high temperature and a high humidity are present simultaneously. The degradation rate of the BFRP bars is relatively quick at the initial stage and slows down with exposure time. Results show that the degradation of 2.18 years in moisture-saturated concrete at 60 ℃corresponds to that of one year when directly immersed in an alkaline solution (other conditions remaining the same) for the BFRP bars analyzed.