期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Diffusion Coefficient at Resonance Frequency as Applied to n+/p/p+ Silicon Solar Cell Optimum Base Thickness Determination 被引量:1
1
作者 Amadou Mar Ndiaye Sega Gueye +6 位作者 Mame Faty Mbaye Fall Gora Diop Amadou Mamour Ba Mamadou Lamine Ba Ibrahima Diatta Lemrabott Habiboullah Gregoire Sissoko 《Journal of Electromagnetic Analysis and Applications》 2020年第10期145-158,共14页
The modelling and determination of the geometric parameters of a solar cell are important data, which influence the evaluation of its performance under specific operating conditions, as well as its industrial developm... The modelling and determination of the geometric parameters of a solar cell are important data, which influence the evaluation of its performance under specific operating conditions, as well as its industrial development for a low cost. In this work, an n+/p/p+ crystalline silicon solar cell is studied under monochromatic illumination in modulation and placed in a constant magnetic field. The minority carriers’ diffusion coefficient (<em>D</em>(<em>ω</em>, <em>B</em>), in the (<em>p</em>) base leads to maximum values (Dmax) at resonance frequencies (<em>ωr</em>). These values are used in expressions of AC minority carriers recombination velocity (Sb(Dmax, H)) in the rear of the base, to extract the optimum thickness while solar cell is subjected to these specific conditions. Optimum thickness modelling relationships, depending respectively on Dmax, <em>ωr</em> and <em>B</em>, are then established, and will be data for industrial development of low-cost solar cells for specific use. 展开更多
关键词 Silicon Solar Cell Resonance Frequency Magnetic Field Recombination Velocity base thickness
下载PDF
Determination of the Base Optimum Thickness of Back Illuminated (n+/p/p+) Bifacial Silicon Solar Cell, by Help of Diffusion Coefficient at Resonance Frequency
2
作者 Mohamed Yaya Teya Ousmane Sow +5 位作者 Khady Loum Ibrahima Diatta Gora Diop Youssou Traore Mamadou Wade Gregoire Sissoko 《Journal of Electromagnetic Analysis and Applications》 CAS 2023年第2期13-24,共12页
The bifacial silicon solar cell subjected to a magnetic field, is illuminated by the back side by a monochromatic light in frequency modulation, with high absorption, At minority carriers diffusion coefficient resonan... The bifacial silicon solar cell subjected to a magnetic field, is illuminated by the back side by a monochromatic light in frequency modulation, with high absorption, At minority carriers diffusion coefficient resonance frequency, a graphical study of the expressions of recombination velocity on the rear side is carried out. The optimum thickness of the base of the bifacial solar cell is deduced for each resonance frequency. 展开更多
关键词 Bifacial Silicon Solar Cell Frequency Magnetic Field Wavelength-Recombination Velocity base thickness
下载PDF
A.C. Recombination Velocity as Applied to Determine n<sup>+</sup>/p/p<sup>+</sup>Silicon Solar Cell Base Optimum Thickness 被引量:1
3
作者 Amadou Mar Ndiaye Sega Gueye +6 位作者 Ousmane Sow Gora Diop Amadou Mamour Ba Mamadou Lamine Ba Ibrahima Diatta Lemrabott Habiboullah Gregoire Sissoko 《Energy and Power Engineering》 2020年第10期543-554,共12页
This work deals with determining the optimum thickness of the base of an n<sup>+</sup>/p/p<sup>+</sup> silicon solar cell under monochromatic illumination in frequency modulation. The continuit... This work deals with determining the optimum thickness of the base of an n<sup>+</sup>/p/p<sup>+</sup> silicon solar cell under monochromatic illumination in frequency modulation. The continuity equation for the density of minority carriers generated in the base, by a monochromatic wavelength illumination (<i>λ</i>), with boundary conditions that impose recombination velocities (<i>Sf</i>) and (<i>Sb</i>) respectively at the junction and back surface, is resolved. The ac photocurrent is deduced and studied according to the recombination velocity at the junction, to extract the mathematical expressions of recombination velocity (<i>Sb</i>). By the graphic technique of comparing the two expressions obtained, depending on the thickness (<i>H</i>) of the base, for each frequency, the optimum thickness (Hopt) is obtained. It is then modeled according to the frequency, at the long wavelengths of the incident light. Thus, Hopt decreases due to the low relaxation time of minority carriers, when the frequency of modulation of incident light increases. 展开更多
关键词 Silicon Solar Cell Modulation Frequency Recombination Velocity base thickness WAVELENGTH
下载PDF
n<sup>+</sup>-p-p<sup>+</sup>Silicon Solar Cell Base Optimum Thickness Determination under Magnetic Field 被引量:1
4
作者 Cheikh Thiaw Mamadou Lamine Ba +4 位作者 Mamour Amadou Ba Gora Diop Ibrahima Diatta Mor Ndiaye Gregoire Sissoko 《Journal of Electromagnetic Analysis and Applications》 2020年第7期103-113,共11页
Base optimum thickness is determined for a front illuminated bifacial silicon solar cell n<sup>+</sup>-p<span style="font-size:10px;">-</span>p<sup>+</sup> under magnetic ... Base optimum thickness is determined for a front illuminated bifacial silicon solar cell n<sup>+</sup>-p<span style="font-size:10px;">-</span>p<sup>+</sup> under magnetic field. From the magneto transport equation relative to excess minority carriers in the base, with specific boundary conditions, the photocurrent is obtained. From this result the expressions of the carrier’s recombination velocity at the back surface are deducted. These new expressions of recombination velocity are plotted according to the depth of the base, to deduce the optimum thickness, which will allow the production, of a high short-circuit photocurrent. Calibration relationships of optimum thickness versus magnetic field were presented according to study ranges. It is found that, applied magnetic field imposes a weak thickness material for solar cell manufacturing leading to high short-circuit current. 展开更多
关键词 Silicon Solar Cell MAGNETOTRANSPORT Surface Recombination Velocity base thickness
下载PDF
Influence of the Magnetic Field on the Transient Decay of the Density of Charge Carriers in a Silicon Photocell with Vertical Multijunctions Connected in Series Placed in Open Circuit
5
作者 Papa Monzon Alassane Samake Papa Touty Traore +3 位作者 Babou Dione Pape Diop Fatimata Ba Mamadou Wade 《Energy and Power Engineering》 CAS 2022年第12期747-761,共15页
This study investigates the effect of the magnetic field on the transient density of excess minority charge carriers in the base of a series-connected vertical junction silicon solar cell. The solar cell is presented ... This study investigates the effect of the magnetic field on the transient density of excess minority charge carriers in the base of a series-connected vertical junction silicon solar cell. The solar cell is presented in open circuit transient operation. The magnetic field through the Laplace force which deflects the photogenerated carriers from their initial trajectory towards the lateral surfaces reducing their mobility, diffusion and conduction, will certainly influence the decay time of the transient regime. The transient density of excess minority carriers in the base is a sum of infinite terms whose decay time of the different harmonics is studied. 展开更多
关键词 Silicon Solar Cell-Series Vertical Junction Recombination Velocities Magnetic Field base thickness (P) EIGENVALUES Decay Time Constant
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部