期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Estimating the Baseline Error of Wide-Swath Altimeters Using Nadir Altimeters via Numerical Simulation
1
作者 MIAO Xiangying JIA Yongjun +1 位作者 LIN Mingsen MIAO Hongli 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第3期681-693,共13页
The baseline roll and length errors for wide-swath altimeters are major error sources in sea surface measurements that exhibit strong spatial characteristics in the cross-track direction.These errors can be identified... The baseline roll and length errors for wide-swath altimeters are major error sources in sea surface measurements that exhibit strong spatial characteristics in the cross-track direction.These errors can be identified and estimated in accordance with height differences at crossover points generated with nadir altimeters after excluding the interference from other error sources.Most of the wide-swath altimeter baseline estimation methods considered only the roll error in previous studies.A numerical simulation was conducted in this study using nadir altimeters to estimate the roll and length errors simultaneously to provide a selectable scheme for baseline error estimation and correction for future wide-swath altimeters.Results based on the parameters of the surface water and ocean topography mission and Sentinel-3A show that the correlation coefficient of the roll error between the estimated and simulated values is 0.89,while the correlation coefficient of the length error is 0.85.The sea surface height root mean square error(RMSE)can be reduced from 12.18 cm to 6.45 cm based on the two estimated results.The estimation effect can be increased by using multiple nadir altimeters to form an observation constellation.The numerical simulation of the five nadir altimeter constellation shows that the correlation coefficients of the roll and length errors would increase to 0.97,which reduces the sea surface height RMSE to 2.88 cm.In addition,the stability of this method is indicated in simulation experiments,which introduce different degrees of sea state errors. 展开更多
关键词 baseline error wide-swath altimeter roll angle baseline length nadir altimeter crossover point height difference
下载PDF
Effect of random phase error and baseline roll angle error on eddy identification by interferometric imaging altimeter
2
作者 Le GAO Hanwei SUN +1 位作者 Jifeng QI Qiufu JIANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2022年第5期1881-1888,共8页
To achieve better observation for sea surface,a new generation of wide-swath interferometric altimeter satellites is proposed.Before satellite launch,it is particularly important to study the data processing methods a... To achieve better observation for sea surface,a new generation of wide-swath interferometric altimeter satellites is proposed.Before satellite launch,it is particularly important to study the data processing methods and carry out the detailed error analysis of ocean satellites,because it is directly related to the ultimate ability of satellites to capture ocean information.For this purpose,ocean eddies are considered a specific case of ocean signals,and it can cause significant changes in sea surface elevation.It is suitable for theoretical simulation of the sea surface and systematic simulation of the altimeter.We analyzed the impacts of random error and baseline error on the sea surface and ocean signals and proposed a combined strategy of low-pass filtering,empirical orthogonal function(EOF)decomposition,and linear fitting to remove the errors.Through this strategy,sea surface anomalies caused by errors were considerably improved,and the capability of satellite for capturing ocean information was enhanced.Notably,we found that the baseline error in sea surface height data was likely to cause inaccuracy in eddy boundary detection,as well as false eddy detection.These abnormalities could be prevented for"clean"sea surface height after the errors removal. 展开更多
关键词 interferometric altimetry baseline error random error ocean eddy theoretical and systematic simulation error removal strategy
下载PDF
IMPROVED CALIBRATION METHOD FOR AIRBORNE ATI-SAR BASELINE
3
作者 Wang Xin Hong Jun 《Journal of Electronics(China)》 2012年第5期368-374,共7页
Airborne Along-Track Interferometric Synthetic Aperture Radar (ATI-SAR) baseline error is a main error resource affecting the precision of velocity measurement of moving objects and therefore should be calibrated exte... Airborne Along-Track Interferometric Synthetic Aperture Radar (ATI-SAR) baseline error is a main error resource affecting the precision of velocity measurement of moving objects and therefore should be calibrated externally. The Jet Propulsion Laboratory (JPL) has proposed a calibration scheme for tasks of PacRim98 and PacRim2000 based on several static objects on the ground. In this paper, the influence of phase center uncertainty on baseline determination by using PacRim method proposed by JPL is analyzed. According to the analysis, the phase center uncertainty can cause a constant part of error to the result of baseline calibration. In order to deal with this problem, an improved calibration method on the basis of sensitivity equations and some ground moving targets, whose velocities are already known, is proposed in this paper. The simulation results show that our proposed calibration method has improved the accuracy of baseline calibration and has obviously prohibited the effect of antennas' phase center uncertainty. 展开更多
关键词 Airborne Along-Track Interferometric Synthetic Aperture Radar (ATI-SAR) baseline error baseline calibration Sensitivity equation
下载PDF
Design Bistatic Interferometric DEM Generation Algorithm and Its Theoretical Accuracy Analysis for LuTan-1 Satellites 被引量:9
4
作者 Bing XU Liqun LIU +3 位作者 Zhiwei LI Yan ZHU Jingxin HOU Wenxiang MAO 《Journal of Geodesy and Geoinformation Science》 2022年第1期25-38,共14页
LuTan-1(LT-1)is a constellation with two full-polarization L-band radar satellites designed by China,and the first satellite was scheduled to be launched in December 2021 and the second one in January 2022.The LT-1 wi... LuTan-1(LT-1)is a constellation with two full-polarization L-band radar satellites designed by China,and the first satellite was scheduled to be launched in December 2021 and the second one in January 2022.The LT-1 will be operated for deformation monitoring in repeat-pass mode,and for DEM generation in bistatic mode,improving self-sufficiency of SAR data for the field of geology,earthquake,disaster reduction,geomatics,forestry and so on.In this paper,we focused on designing an algorithm for interferometric DEM generation using LT-1 bistatic satellites.The basic principle,main error sources and errors control of the DEM generation algorithm of LT-1 were systematically analyzed.The experiment results demonstrated that:①The implemented algorithm had rigorous resolution with a theoretic accuracy better than 0.03 m for DEM generation.②The errors in satellite velocity and Doppler centroid had no obvious effect on DEM accuracy and they could be neglected.While the errors in position,baseline,slant range and interferometric phase had a significant effect on DEM accuracy.And the DEM error caused by baseline error was dominated,followed by the slant range error,interferometric phase error and satellite position error.③To obtain an expected DEM accuracy of 2 m,the baseline error must be strictly controlled and its accuracy shall be 1.0 mm or better for Cross-Track and Normal-Direction component,respectively.And the slant range error and interferometric phase error shall be reasonably controlled.The research results were of great significance for accurately grasping the accuracy of LT-1 data products and their errors control,and could provide a scientific auxiliary basis for LT-1 in promoting global SAR technology progress and the generation of high-precision basic geographic data. 展开更多
关键词 Synthetic Aperture Radar bistatic InSAR LuTan-1 Digital Elevation Model(DEM) baseline error
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部