We review the latest aeromagnetic geological data of continental China. We discuss the latest achievements in geological mapping and the newly detected features based on aeromagnetic data. Using aeromagnetic data coll...We review the latest aeromagnetic geological data of continental China. We discuss the latest achievements in geological mapping and the newly detected features based on aeromagnetic data. Using aeromagnetic data collected for more than 50 years, a series of 1:5000000 and 1:1000000 aeromagnetic maps of continental China were compiled using state-of-the-art digital technology, and data processing and transformation. Guided by plate tectonics and continental dynamics, rock physical properties, and magnetic anomalies, we compiled maps of the depth of the magnetic basement of continental China and the major geotectonic units, and presented newly detected geological structures based on the aeromagnefic data.展开更多
The seismic data obtained from high resolution seismic refraction profile in Jiashi strong earthquake swarm area in Xinjiang, China were further processed with ray hit analysis method and more complete basement interf...The seismic data obtained from high resolution seismic refraction profile in Jiashi strong earthquake swarm area in Xinjiang, China were further processed with ray hit analysis method and more complete basement interface structural characteristics beneath Jiashi strong earthquake swarm area were determined. The results show that there are two clear basement interfaces at the upper crust in Jiashi strong earthquake swarm area. The first one with buried depth ranging from 2.6 km to 3.3 km presents integral and continuous structure, and it appears an inclined plane interface and smoothly rises up toward Tianshan Mountain. The second basement interface with buried depth from 8.5 km to 11.8 km, is the antiquated crystalline basement of Tarim basin. Near the post number of 37 km, the buried depth of the crystalline basement changed abruptly by 2.5 km, which maybe result from an ultra crystalline basement fault. If taking this fault as a boundary, the crystalline basement could be divided into two parts, i.e. the southwestern segment with buried depth about 11.5 km, and the northeastern segment with buried depth approxi-mately from 8.5 km to 9.0 km. That is to say, in each segment, the buried depth changes not too much. The northeast segment rises up as a whole and upheaves slightly from southwest to northeast, which reflects the upper crustal deformation characteristics under the special tectonic background at the northwestern edge of Tarim basin.展开更多
Study of seismic activity in the Kuqa area enables us to infer some possible active faults in basement from the epicentral distribution on different profiles. The relations between active faults in the basement and su...Study of seismic activity in the Kuqa area enables us to infer some possible active faults in basement from the epicentral distribution on different profiles. The relations between active faults in the basement and surface structures are analyzed and the difference between sedimentary cover and basement in their deformation characteristics and the genesis are discussed. The following conclusions have been drawn: (1) the epicentral distribution indicates that, the east Qiulitag and south and north Qiulitag deep faults in the basement correspond to the east and west Qiulitag anticlines, respectively. Moreover, deep faults also exist beneath the Yiqiklik and Yaken anticlines. It indicates that the formation of surface structures is controlled by deep structures; (2) A NE-trending strike-slip fault develops along the line from the western termination of Yiqiklik structure to Dongqiu Well 5 and a NW-trending active fault on the western side of Baicheng. The two active faults across the tectonic strike are the main causes for tectonic segmentation of the Kuqa depression and possibly the cause for the middle segment (Kuqa-Baicheng) of the depression to be more shortened than both its eastern and western terminations; (3) The difference between the sedimentary cover and basement in their deformation characteristics depends mainly on the different properties of media between them. The lithospheric strength of the basement in the basin is fairly high, which determines the basement deformation to be mainly of brittle fracture——seismic activity. While the strength of sedimentary cover is low, where there exist weak thin layers, such as coal and gyps. Under the effect of strong tectonic compression, the sedimentary rocks may undergo strong viscous or plastic flow deformation; meanwhile, an aseismic detachment may take place along the weak layers.展开更多
Boli basin, between Yishu fracture belt and Dunmi fracture belt, is the biggest Mesozoic coal basin in the east of Heilongjiang Province. Now it is a fault-fold remnant basin. The basin’s shape is generally consisten...Boli basin, between Yishu fracture belt and Dunmi fracture belt, is the biggest Mesozoic coal basin in the east of Heilongjiang Province. Now it is a fault-fold remnant basin. The basin’s shape is generally consistent with the whole distribution of the cover folds, an arc protruding southwards. The basement of the basin can be divided into three fault blocks or structural units. The formation and evoluation of the basin in Mesozoic was determined by the basement fault blocks’ dis- placement features rusulted from by the movement of the edge faults and the main basement faults.展开更多
In this paper, the study on the fine velocity structure of sedimental and basement layers along 4 deep seismic sounding profiles in the Three Gorges Region of the Changjiang River (Yangtze River) are presented...In this paper, the study on the fine velocity structure of sedimental and basement layers along 4 deep seismic sounding profiles in the Three Gorges Region of the Changjiang River (Yangtze River) are presented. The velocity of sedimental cover is larger in hills of western Hubei in the western profiles, the total thickness is about 0~0.3 km. However, it becomes thick in southern part of Zigui basin and Zushui river valley, about 5.0 km and 4.0 km thick respectively. The sedimental cover is very thick in Jianghan plains in the eastern profiles, about 5~8 km, and the velocity is lower. The velocity of basemental plane is greater than 6.0 km/s over the whole region. An interface can be divided within the sedimental layer, it is about 3~4 km deep in Jianghan plains, while it approximates to surface in other regions. The profiles are cut by faults in many positions. Where the faults pass, the velocity isopleth varies sharply, and the velocity is obviously low. The basement layer is characterized by high velocity and low gradient, there exist 3 high velocity anomalous zones within the layer, which are located at the west, south and east of Huangling Anticlinorium respectively. They are the upwelling materials of basalt magma with high velocity from deep crust. Perhaps, this process took place before formation of Huangling Anticlinorium. Its action produces the significant variation of basement plane depth and the correspondent development and action of faults.展开更多
The study area is located at the south of the eastern desert of Egypt between latitudes 24<span style="white-space:nowrap;"><span style="white-space:nowrap;">°</span><...The study area is located at the south of the eastern desert of Egypt between latitudes 24<span style="white-space:nowrap;"><span style="white-space:nowrap;">°</span></span>N to 25<span style="white-space:nowrap;"><span style="white-space:nowrap;">°</span></span>N and longitudes 33<span style="white-space:nowrap;"><span style="white-space:nowrap;">°</span></span>E to 33<span style="white-space:nowrap;"><span style="white-space:nowrap;">°</span></span>50'E covering an area of about 9407 km<sup>2</sup>. The study area is mainly covered with sediments whose age extends from the upper Cretaceous to the Quaternary, in addition to the presence of some basement rocks such as younger granites, metasediments and metagabbro. The research aims essentially to determine the thickness of the sedimentary basin by determining the depth to the top of basement and delineating the subsurface geological structures which affected this sedimentary basin. The Euler depth map exhibited that the north parts of the area have shallow depth values from 1000 m to 2000 m. The southern parts also show a shallow to moderate depths ranging from 1000 m to 2400 m. The deepest parts are located at the middle and at the western parts and are ranging in value from 3000 m to more than 4000 m. The horizontal derivative and tilt derivative techniques proved that the most effective trends all over the study area are NW-SE and NE-SW directions as mentioned in geologic lineaments map. The basement tectonic map shows clearly all the faults affected the area. It shows that there are many high blocks trending mainly in NW-SE and NE-SW directions. All high blocks surround a large sedimentary basin reaches depth of about more than 4000 m. All the results produced from 2D-modeling illustrate that the sedimentary basinal area (G2) is the deeper basin all over the area and it is controlled by some faults and fractures. 3D inversion was used and resulted in that the area of study have many high blocks at shallow to moderate depths which surrounding a large sedimentary basinal area with very deep depth values. All the techniques which applied in this research led to that the largest sedimentary basin is located at the center of the study area with NW-SE trend and depth value of about 4000 m.展开更多
基金supported by the China Land Aeromagnetic Characteristics and Tectonic Structures Research(No.1212011087009)part of the national geological and mineral resources investigation projects,and the Comprehensive Exploration of Aero Geophysical&Remote Sensing Survey and Interpretation System Research(No.2013AA063905)part of the planning for national high technology research and development
文摘We review the latest aeromagnetic geological data of continental China. We discuss the latest achievements in geological mapping and the newly detected features based on aeromagnetic data. Using aeromagnetic data collected for more than 50 years, a series of 1:5000000 and 1:1000000 aeromagnetic maps of continental China were compiled using state-of-the-art digital technology, and data processing and transformation. Guided by plate tectonics and continental dynamics, rock physical properties, and magnetic anomalies, we compiled maps of the depth of the magnetic basement of continental China and the major geotectonic units, and presented newly detected geological structures based on the aeromagnefic data.
基金Foundation item: Joint Seismological Foundation of China (106076)National Natural Science Foundation of China (40474049, 40334040).
文摘The seismic data obtained from high resolution seismic refraction profile in Jiashi strong earthquake swarm area in Xinjiang, China were further processed with ray hit analysis method and more complete basement interface structural characteristics beneath Jiashi strong earthquake swarm area were determined. The results show that there are two clear basement interfaces at the upper crust in Jiashi strong earthquake swarm area. The first one with buried depth ranging from 2.6 km to 3.3 km presents integral and continuous structure, and it appears an inclined plane interface and smoothly rises up toward Tianshan Mountain. The second basement interface with buried depth from 8.5 km to 11.8 km, is the antiquated crystalline basement of Tarim basin. Near the post number of 37 km, the buried depth of the crystalline basement changed abruptly by 2.5 km, which maybe result from an ultra crystalline basement fault. If taking this fault as a boundary, the crystalline basement could be divided into two parts, i.e. the southwestern segment with buried depth about 11.5 km, and the northeastern segment with buried depth approxi-mately from 8.5 km to 9.0 km. That is to say, in each segment, the buried depth changes not too much. The northeast segment rises up as a whole and upheaves slightly from southwest to northeast, which reflects the upper crustal deformation characteristics under the special tectonic background at the northwestern edge of Tarim basin.
文摘Study of seismic activity in the Kuqa area enables us to infer some possible active faults in basement from the epicentral distribution on different profiles. The relations between active faults in the basement and surface structures are analyzed and the difference between sedimentary cover and basement in their deformation characteristics and the genesis are discussed. The following conclusions have been drawn: (1) the epicentral distribution indicates that, the east Qiulitag and south and north Qiulitag deep faults in the basement correspond to the east and west Qiulitag anticlines, respectively. Moreover, deep faults also exist beneath the Yiqiklik and Yaken anticlines. It indicates that the formation of surface structures is controlled by deep structures; (2) A NE-trending strike-slip fault develops along the line from the western termination of Yiqiklik structure to Dongqiu Well 5 and a NW-trending active fault on the western side of Baicheng. The two active faults across the tectonic strike are the main causes for tectonic segmentation of the Kuqa depression and possibly the cause for the middle segment (Kuqa-Baicheng) of the depression to be more shortened than both its eastern and western terminations; (3) The difference between the sedimentary cover and basement in their deformation characteristics depends mainly on the different properties of media between them. The lithospheric strength of the basement in the basin is fairly high, which determines the basement deformation to be mainly of brittle fracture——seismic activity. While the strength of sedimentary cover is low, where there exist weak thin layers, such as coal and gyps. Under the effect of strong tectonic compression, the sedimentary rocks may undergo strong viscous or plastic flow deformation; meanwhile, an aseismic detachment may take place along the weak layers.
文摘Boli basin, between Yishu fracture belt and Dunmi fracture belt, is the biggest Mesozoic coal basin in the east of Heilongjiang Province. Now it is a fault-fold remnant basin. The basin’s shape is generally consistent with the whole distribution of the cover folds, an arc protruding southwards. The basement of the basin can be divided into three fault blocks or structural units. The formation and evoluation of the basin in Mesozoic was determined by the basement fault blocks’ dis- placement features rusulted from by the movement of the edge faults and the main basement faults.
文摘In this paper, the study on the fine velocity structure of sedimental and basement layers along 4 deep seismic sounding profiles in the Three Gorges Region of the Changjiang River (Yangtze River) are presented. The velocity of sedimental cover is larger in hills of western Hubei in the western profiles, the total thickness is about 0~0.3 km. However, it becomes thick in southern part of Zigui basin and Zushui river valley, about 5.0 km and 4.0 km thick respectively. The sedimental cover is very thick in Jianghan plains in the eastern profiles, about 5~8 km, and the velocity is lower. The velocity of basemental plane is greater than 6.0 km/s over the whole region. An interface can be divided within the sedimental layer, it is about 3~4 km deep in Jianghan plains, while it approximates to surface in other regions. The profiles are cut by faults in many positions. Where the faults pass, the velocity isopleth varies sharply, and the velocity is obviously low. The basement layer is characterized by high velocity and low gradient, there exist 3 high velocity anomalous zones within the layer, which are located at the west, south and east of Huangling Anticlinorium respectively. They are the upwelling materials of basalt magma with high velocity from deep crust. Perhaps, this process took place before formation of Huangling Anticlinorium. Its action produces the significant variation of basement plane depth and the correspondent development and action of faults.
文摘The study area is located at the south of the eastern desert of Egypt between latitudes 24<span style="white-space:nowrap;"><span style="white-space:nowrap;">°</span></span>N to 25<span style="white-space:nowrap;"><span style="white-space:nowrap;">°</span></span>N and longitudes 33<span style="white-space:nowrap;"><span style="white-space:nowrap;">°</span></span>E to 33<span style="white-space:nowrap;"><span style="white-space:nowrap;">°</span></span>50'E covering an area of about 9407 km<sup>2</sup>. The study area is mainly covered with sediments whose age extends from the upper Cretaceous to the Quaternary, in addition to the presence of some basement rocks such as younger granites, metasediments and metagabbro. The research aims essentially to determine the thickness of the sedimentary basin by determining the depth to the top of basement and delineating the subsurface geological structures which affected this sedimentary basin. The Euler depth map exhibited that the north parts of the area have shallow depth values from 1000 m to 2000 m. The southern parts also show a shallow to moderate depths ranging from 1000 m to 2400 m. The deepest parts are located at the middle and at the western parts and are ranging in value from 3000 m to more than 4000 m. The horizontal derivative and tilt derivative techniques proved that the most effective trends all over the study area are NW-SE and NE-SW directions as mentioned in geologic lineaments map. The basement tectonic map shows clearly all the faults affected the area. It shows that there are many high blocks trending mainly in NW-SE and NE-SW directions. All high blocks surround a large sedimentary basin reaches depth of about more than 4000 m. All the results produced from 2D-modeling illustrate that the sedimentary basinal area (G2) is the deeper basin all over the area and it is controlled by some faults and fractures. 3D inversion was used and resulted in that the area of study have many high blocks at shallow to moderate depths which surrounding a large sedimentary basinal area with very deep depth values. All the techniques which applied in this research led to that the largest sedimentary basin is located at the center of the study area with NW-SE trend and depth value of about 4000 m.