Water masses in the South China Sea (SCS) were identified and analyzed with the data collected in the summer and winter of 1998. The distributions of temperature and salinity near the Bashi Channel (the Luzon Strait) ...Water masses in the South China Sea (SCS) were identified and analyzed with the data collected in the summer and winter of 1998. The distributions of temperature and salinity near the Bashi Channel (the Luzon Strait) were analyzed by using the data obtained in July and December of 1997. Based on the results from the data collected in the winter of 1998, waters in the open sea areas of the SCS were divided into six water masses: the Surface Water Mass of the SCS (S), the Subsurface Water Mass of the SCS (U), the Subsurface-Intermediate Water Mass of the SCS (UI),the Intermediate Water Mass of the SCS (I), the Deep Water Mass of the SCS (D) and the Bottom Water Mass of the SCS(B). For the summer of 1998, the Kuroshio Surface Water Mass (KS) and the Kuroshio Subsurface Water Mass (KU) were also identified in the SCS. But no Kuroshio water was found to pass the 119.5°E meridian and enter the SCS in the time of winter observations. The Sulu Sea Water (SSW) intruded into the SCS through the Mindoro Channel between 50-75 m in the summer of 1998. However, the data obtained in the summer and winter of 1997 indicated that water from the Pacific had entered the SCS through the nor-thern part of the Luzon Strait in these seasons, but water from the SCS had entered the Pacific through the southern part of the Strait. These phenomena might correlate with the 1998 El-Nio event.展开更多
After reviewing the analytical theories of T S curve, some methods of T S relationship, and fuzzy sets for studying water masses, new methods of fitting the membership function of oceanic water masses are presented ba...After reviewing the analytical theories of T S curve, some methods of T S relationship, and fuzzy sets for studying water masses, new methods of fitting the membership function of oceanic water masses are presented based on the characteristics of T S curve family of oceanic water masses. The membership functions of oceanic Subsurface Water Mass with high salinity and Intermediate Water Mass with low salinity are fitted and discussed using the new methods. The proposed methods are useful in analyzing the mixing and modifying processes of these water masses, especially in tracing their sources. The principles and formulae of the new methods and examples are given.展开更多
Deep sea circulation is important for world climate and has been a substantial research area in ocean science, leading to various breakthroughs and discoveries. With the rapid advance in research on ocean science, the...Deep sea circulation is important for world climate and has been a substantial research area in ocean science, leading to various breakthroughs and discoveries. With the rapid advance in research on ocean science, these matters have received increasing attention from the oceanography community. In this article, we attempt to convey the progress made in recent years. We first provide an overview of existing observations, theories, and simulations of deep South China Sea circulation. Finally, we discuss remaining issues.展开更多
基金supported by the Research Fund for the Doctoral Program of Higher Education,China(No.2000042301)Ministry of Science and Technology of China supported this study through South China Sea Monsoon Experiment(SCSMEX)National Key Program for Developing Basic Science under contract(No.G1999043800).
文摘Water masses in the South China Sea (SCS) were identified and analyzed with the data collected in the summer and winter of 1998. The distributions of temperature and salinity near the Bashi Channel (the Luzon Strait) were analyzed by using the data obtained in July and December of 1997. Based on the results from the data collected in the winter of 1998, waters in the open sea areas of the SCS were divided into six water masses: the Surface Water Mass of the SCS (S), the Subsurface Water Mass of the SCS (U), the Subsurface-Intermediate Water Mass of the SCS (UI),the Intermediate Water Mass of the SCS (I), the Deep Water Mass of the SCS (D) and the Bottom Water Mass of the SCS(B). For the summer of 1998, the Kuroshio Surface Water Mass (KS) and the Kuroshio Subsurface Water Mass (KU) were also identified in the SCS. But no Kuroshio water was found to pass the 119.5°E meridian and enter the SCS in the time of winter observations. The Sulu Sea Water (SSW) intruded into the SCS through the Mindoro Channel between 50-75 m in the summer of 1998. However, the data obtained in the summer and winter of 1997 indicated that water from the Pacific had entered the SCS through the nor-thern part of the Luzon Strait in these seasons, but water from the SCS had entered the Pacific through the southern part of the Strait. These phenomena might correlate with the 1998 El-Nio event.
基金supported by the Research Funds for the Doctoral Program of Higher Education in China(No.2000042301)the National Natural Science Foundation of China(No.40276009)The Ministry of Science and Technology of China supported this study through the South China Sea Monsoon Experiment(SCSMEX)program and the National Key Program for Developing Basic Science under contract(No.G1999043800).
文摘After reviewing the analytical theories of T S curve, some methods of T S relationship, and fuzzy sets for studying water masses, new methods of fitting the membership function of oceanic water masses are presented based on the characteristics of T S curve family of oceanic water masses. The membership functions of oceanic Subsurface Water Mass with high salinity and Intermediate Water Mass with low salinity are fitted and discussed using the new methods. The proposed methods are useful in analyzing the mixing and modifying processes of these water masses, especially in tracing their sources. The principles and formulae of the new methods and examples are given.
基金supported by the National Natural Science Foundation of China (40890153)the National High-tech R&D Program of China (2008AA09A402)the National Key Scientific Research Project "the South China Sea Deep" (91028008)
文摘Deep sea circulation is important for world climate and has been a substantial research area in ocean science, leading to various breakthroughs and discoveries. With the rapid advance in research on ocean science, these matters have received increasing attention from the oceanography community. In this article, we attempt to convey the progress made in recent years. We first provide an overview of existing observations, theories, and simulations of deep South China Sea circulation. Finally, we discuss remaining issues.