期刊文献+
共找到15,814篇文章
< 1 2 250 >
每页显示 20 50 100
The formation and evolutionary characteristics of organic matter and pyrites in the continental shales of the 3^(rd)submember of Chang 7 Member,Yanchang formation,Ordos Basin,China
1
作者 Ruikang Bian 《Energy Geoscience》 EI 2024年第2期31-39,共9页
Through microscopic analyses(e.g.,organic macerals,thin section observation,scanning electron microscope(SEM)imaging of fresh bedding planes via argon ion milling,and energy spectrum tests)combined with Rock-Eval anal... Through microscopic analyses(e.g.,organic macerals,thin section observation,scanning electron microscope(SEM)imaging of fresh bedding planes via argon ion milling,and energy spectrum tests)combined with Rock-Eval analyses,this study systematically investigated the organic matter and pyrites in the continental shales in the 3^(rd)submember of the Chang 7 Member(Chang 7^(3)submember)in the Yanchang Formation,Ordos Basin and determined their types and the formation and evolutionary characteristics.The results are as follows.The organic matter of the continental shales in the Chang 7^(3)submember is dominated by amorphous bituminites and migrabitumens,which have come into being since the early diagenetic stage and middle diagenetic stage A,respectively.The formation and transformation of organic matter is a prerequisite for the formation of pyrites.The Ordos Basin was a continental freshwater lacustrine basin and lacked sulphates in waters during the deposition of the Chang 7 Member.Therefore,the syndiagenetic stage did not witness the formation of large quantities of pyrites.Since the basin entered early diagenetic stage A,large quantities of sulfur ions were released as the primary organic matter got converted into bituminites and,accordingly,pyrites started to form.However,this stage featured poorer fluid and spatial conditions compared with the syndepositional stage due to withdraw of water,the partial formation of bituminites,and a certain degree of compaction.As a result,large quantities of pyrrhotite failed to transition into typical spherical framboidal pyrites but grew into euhedral monocrystal aggregates.In addition,pyrites are still visible in the migrabitumens in both microfractures and inorganic pores of mudstones and shales,indicating that the pyrite formation period can extend until the middle diagenetic stage A. 展开更多
关键词 Organic matter Pyrite formation and evolution Continental shale Chang 7^(3)submember Ordos basin
下载PDF
Types,composition and diagenetic evolution of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata:A case study of Mao-1 Member of Middle Permian Maokou Formation,eastern Sichuan Basin,SW China
2
作者 SONG Jinmin WANG Jiarui +12 位作者 LIU Shugen LI Zhiwu LUO Ping JIANG Qingchun JIN Xin YANG Di HUANG Shipeng FAN Jianping YE Yuehao WANG Junke DENG Haoshuang WANG Bin GUO Jiaxin 《Petroleum Exploration and Development》 SCIE 2024年第2期351-363,共13页
The types,occurrence and composition of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata of the first member of the Middle Permian Maokou Formation(Mao-1 Member)in eastern Sichuan Basin w... The types,occurrence and composition of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata of the first member of the Middle Permian Maokou Formation(Mao-1 Member)in eastern Sichuan Basin were investigated through outcrop section measurement,core observation,thin section identification,argon ion polishing,X-ray diffraction,scanning electron microscope,energy spectrum analysis and laser ablation-inductively coupled plasma-mass spectrometry.The diagenetic evolution sequence of clay minerals was clarified,and the sedimentary-diagenetic evolution model of clay minerals was established.The results show that authigenic sepiolite minerals were precipitated in the Si4+and Mg2+-rich cool aragonite sea and sepiolite-bearing strata were formed in the Mao-1 Member.During burial diagenesis,authigenic clay minerals undergo two possible evolution sequences.First,from the early diagenetic stage A to the middle diagenetic stage A1,the sepiolite kept stable in the shallow-buried environment lack of Al3+.It began to transform into stevensite in the middle diagenetic stage A2,and then evolved into disordered talc in the middle diagenetic stage B1and finally into talc in the period from the middle diagenetic stage B2to the late diagenetic stage.Thus,the primary diagenetic evolution sequence of authigenic clay minerals,i.e.sepiolite-stevensite-disordered talc-talc,was formed in the Mao-1 Member.Second,in the early diagenetic stage A,as Al3+carried by the storm and upwelling currents was involved in the diagenetic process,trace of sepiolite started to evolve into smectite,and a part of smectite turned into chlorite.From the early diagenetic stage B to the middle diagenesis stage A1,a part of smectite evolved to illite/smectite mixed layer(I/S).The I/S evolved initially into illite from the middle diagenesis stage A2to the middle diagenesis stage B2,and then totally into illite in the late diagenesis stage.Thus,the secondary diagenetic evolution sequence of authigenic clay minerals,i.e.sepiolite-smectite-chlorite/illite,was formed in the Mao-1 Member.The types and evolution of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata are significant for petroleum geology in two aspects.First,sepiolite can adsorb and accumulate a large amount of organic matters,thereby effectively improving the quality and hydrocarbon generation potential of the source rocks of the Mao-1 Member.Second,the evolution from sepiolite to talc is accompanied by the formation of numerous organic matter pores and clay shrinkage pores/fractures,as well as the releasing of the Mg2+-rich diagenetic fluid,which allows for the dolomitization of limestone within or around the sag.As a result,the new assemblages of self-generation and self-accumulation,and lower/side source and upper/lateral reservoir,are created in the Middle Permian,enhancing the hydrocarbon accumulation efficiency. 展开更多
关键词 sepiolite-bearing strata authigenic clay minerals diagenetic evolution Mao First Member of Middle Permian Sichuan basin
下载PDF
Control of Earth system evolution on the formation and enrichment of marine ultra-deep petroleum in China
3
作者 ZHANG Shuichang WANG Huajian +3 位作者 SU Jin WANG Xiaomei HE Kun LIU Yuke 《Petroleum Exploration and Development》 SCIE 2024年第4期870-885,共16页
Taking the Paleozoic of the Sichuan and Tarim basins in China as example,the controlling effects of the Earth system evolution and multi-spherical interactions on the formation and enrichment of marine ultra-deep petr... Taking the Paleozoic of the Sichuan and Tarim basins in China as example,the controlling effects of the Earth system evolution and multi-spherical interactions on the formation and enrichment of marine ultra-deep petroleum in China have been elaborated.By discussing the development of“source-reservoir-seal”controlled by the breakup and assembly of supercontinents and regional tectonic movements,and the mechanisms of petroleum generation and accumulation controlled by temperature-pressure system and fault conduit system,Both the South China and Tarim blocks passed through the intertropical convergence zone(ITCZ)of the low-latitude Hadley Cell twice during their drifts,and formed hydrocarbon source rocks with high quality.It is proposed that deep tectonic activities and surface climate evolution jointly controlled the types and stratigraphic positions of ultra-deep hydrocarbon source rocks,reservoirs,and seals in the Sichuan and Tarim basins,forming multiple petroleum systems in the Ediacaran-Cambrian,Cambrian-Ordovician,Cambrian-Permian and Permian-Triassic strata.The matching degree of source-reservoir-seal,the type of organic matter in source rocks,the deep thermal regime of basin,and the burial-uplift process across tectonic periods collectively control the entire process from the generation to the accumulation of oil and gas.Three types of oil and gas enrichment models are formed,including near-source accumulation in platform marginal zones,distant-source accumulation in high-energy beaches through faults,and three-dimensional accumulation in strike-slip fault zones,which ultimately result in the multi-layered natural gas enrichment in ultra-deep layers of the Sichuan Basin and co-enrichment of oil and gas in the ultra-deep layers of the Tarim Basin. 展开更多
关键词 evolution of Earth system multi-spherical interaction Paleozoic marine ultra-deep petroleum Tarim basin Sichuan basin
下载PDF
Formation and evolution of the strike-slip faults in the central Sichuan Basin, SW China 被引量:3
4
作者 MA Bingshan LIANG Han +7 位作者 WU Guanghui TANG Qingsong TIAN Weizhen ZHANG Chen YANG Shuai ZHONG Yuan ZHANG Xuan ZHANG Zili 《Petroleum Exploration and Development》 SCIE 2023年第2期373-387,共15页
Based on 3D seismic and drilling data, the timing, evolution and genetic mechanism of deep strike-slip faults in the central Sichuan Basin are thoroughly examined by using the U-Pb dating of fault-filled carbonate cem... Based on 3D seismic and drilling data, the timing, evolution and genetic mechanism of deep strike-slip faults in the central Sichuan Basin are thoroughly examined by using the U-Pb dating of fault-filled carbonate cement and seismic-geological analysis. The strike-slip fault system was initially formed in the Late Sinian, basically finalized in the Early Cambrian with dextral transtensional structure, was overlaid with at least one stage of transpressional deformation before the Permian, then was reversed into a sinistral weak transtensional structure in the Late Permian. Only a few of these faults were selectively activated in the Indosinian and later periods. The strike-slip fault system was affected by the preexisting structures such as Nanhuanian rifting normal faults and NW-striking deep basement faults. It is an oblique accommodated intracratonic transfer fault system developed from the Late Sinian to Early Cambrian to adjust the uneven extension of the Anyue trough from north to south and matches the Anyue trough in evolution time and intensity. In the later stage, multiple inversion tectonics and selective activation occurred under different tectonic backgrounds. 展开更多
关键词 strike-slip fault fault timing fault evolution seismic-geological analysis U-Pb dating faulting mechanism cra-tonic Sichuan basin
下载PDF
Factors controlling the formation and evolution of source rocks in the Shahezi Formation,Xujiaweizi fault depression,Songliao Basin 被引量:1
5
作者 Xiang Zhou Lidong Sun 《Energy Geoscience》 2023年第2期1-16,共16页
The types and quality of source rocks in the Shahezi Formation are the key factors affecting the distributions of various deep gas reservoirs in the Xujiaweizi fault depression in Songliao Basin.To clarify the quality... The types and quality of source rocks in the Shahezi Formation are the key factors affecting the distributions of various deep gas reservoirs in the Xujiaweizi fault depression in Songliao Basin.To clarify the quality differences and origins of different types of source rocks in the Shahezi Formation,this study reconstructed the sedimentary and water environment,determined the controlling effects of fault activity,sedimentary facies,and paleo-sedimentary environment on the quality of various source rocks,by making full use of seismic,logging,core,organic geochemical and element geochemical analysis.The results show that two types of source rocks developed in the Shahezi Formation,namely,mudstones and coals.The mudstones have a relatively high abundance of organic matter,which consists of type-Ⅱ kerogen and partial type-Ⅲ kerogen,and are concentrated in Sha-I Member.The coals have a high abundance of organic matter,which consist of type-Ⅲ kerogen,and are mainly distributed in Sha-Ⅱ Member.During the deposition of Sha-I Member,intense fault activity formed arrow,deep-water lacustrine basins with high salinity and strong reducibility on the downthrow sides of faults.During the deposition of Sha-II Member,fault activity progressively weakened,and the areas of lacustrine basins enlarged to their maximum values and became wide,shallow-water basins with low salinity and low reducibility.The development of source rocks was controlled by fault activity,sedimentary facies,and paleo-sedimentary environment.Fault activity formed accommodation space on the downthrown sides of faults for mudstone accumulation,thus determining mudstone thickness.The sedimentary environment controlled the organic matter input and determined the distribution of mudstones and coals.The paleo-sedimentary environment,which consisted of paleo-salinity,as well as paleo-water depth and redox conditions,affected the accumulation and preservation of organic matter and is the main controlling factor for the quality difference of various source rocks in the Shahezi Formation. 展开更多
关键词 FAULT Paleo-environment evolution Source rock Deep gas reservoirs Shahezi formation Xujiaweizi fault depression
下载PDF
Sequence structure, sedimentary evolution and their controlling factors of the Jurassic Lianggaoshan Formation in the East Sichuan Basin, SW China
6
作者 CHENG Dawei ZHANG Zhijie +6 位作者 HONG Haitao ZHANG Shaomin QIN Chunyu YUAN Xuanjun ZHANG Bin ZHOU Chuanmin DENG Qingjie 《Petroleum Exploration and Development》 SCIE 2023年第2期293-305,共13页
Based on the data of outcrops, seismic sections, thin sections, heavy mineral assemblages and detrital zircon U-Pb dating, the sedimentary characteristics, lake level fluctuation and provenance characteristics of the ... Based on the data of outcrops, seismic sections, thin sections, heavy mineral assemblages and detrital zircon U-Pb dating, the sedimentary characteristics, lake level fluctuation and provenance characteristics of the Middle Jurassic Lianggaoshan Formation(J_(2)l) in eastern Sichuan Basin, SW China, were investigated to reveal the control of tectonic movements of the surrounding orogenic belts on the sedimentary systems. The J_(2)lmainly developed a delta–lake sedimentary system, which contained a complete third-order sequence that was subdivided into four lake level up-down cycles(fourth-order sequence).The lake basins of cycles Ⅰ and Ⅱ were mainly distributed in eastern Sichuan Basin, while the lake basins of cycles Ⅲ and Ⅳ migrated to central Sichuan Basin, resulting in the significant difference in sedimentary characteristics between the north and the south of eastern Sichuan Basin. The provenance analysis shows that there were three types of provenances for J_(2)l. Specifically, the parent rocks of Type Ⅰ were mainly acidic igneous rocks and from the proximal northern margin of the Yangtze Plate;the parent rocks of Type Ⅱ were intermediate-acid igneous rocks and metamorphic rocks and from the central parts of the southern and northern Qinling orogenic belts;the parent rocks of Type Ⅲ were mainly metamorphic rocks followed by intermediate–acid igneous rocks, and from the North Daba Mountain area. It is recognized from the changes of sedimentary system and provenance characteristics that the sedimentary evolution of J_(2)lin eastern Sichuan Basin was controlled by the tectonic compression of the Qinling orogenic belt. In the early stage, the lake basin was restricted to the east of the study area, and Type Ⅰ provenance was dominant. With the intensifying north-south compression of the Qinling orogenic belt, the lake basin expanded rapidly and migrated northward, and the supply of Type Ⅱ provenance increased. In the middle and late stages, the uplift of the North Daba Mountain led to the lake basin migration and the gradual increase in the supply of Type Ⅲ provenance. 展开更多
关键词 Sichuan basin JURASSIC Lianggaoshan formation heavy mineral assemblage zircon U-Pb dating lake basin migration provenance analysis basin-mountain evolution
下载PDF
Identification, evolution and geological indications of solid bitumen in shales: A case study of the first member of Cretaceous Qingshankou Formation in Songliao Basin, NE China
7
作者 LIU Bo WANG Liu +4 位作者 FU Xiaofei HUO Qiuli BAI Longhui LYU Jiancai WANG Boyang 《Petroleum Exploration and Development》 SCIE 2023年第6期1345-1357,共13页
On the basis of sorting out current understanding of solid bitumen (SB) in shales and taking organic-rich shales in the first member of the Cretaceous Qingshankou Formation in the Songliao Basin as an example, the def... On the basis of sorting out current understanding of solid bitumen (SB) in shales and taking organic-rich shales in the first member of the Cretaceous Qingshankou Formation in the Songliao Basin as an example, the definition, classification, occurrence and evolution path of SB are systemtically studied, and the indicative significance of SB reflectance (Rob) on maturity and its influence on the development of reservoir space are discussed and summarized. The results show that the difference of primary maceral types is primarily responsible for the different evolution paths of SB. Most of the pre-oil bitumen is in-situ SB with only a small amount being of migrated SB, while most of the post-oil bitumen and pyrobitumen are migrated SB. From the immature to early oil maturity stage, bituminite, vitrinite, and inertinite can be distinguished from SB based on their optical characteristics under reflected light, and alginite can be differentiated from SB by their fluorescence characteristics. Under scanning electron microscope, in-situ SB and migrated SB can be effectively identified. Rob increases linearly with increasing vitrinite reflectance (Ro), as a result of a decrease of aliphatic structure and the enhancement of aromatization of SB. Within the oil window three types of secondary pores may develop in SB, including modified mineral pores, devolatilization cracks and bubble holes. At a high maturity stage spongy pores may develop in pyrobitumen. Scanning electron microscopy combined with in-situ SEM-Raman spectroscopy can further reveal the structral information of different types of SB, thus providing crucial data for understanding for understanding OM migration paths, dynamics, and distances at micro-scale. 展开更多
关键词 shale solid bitumen reflectance primary maceral difference solid bitumen evolution path reservoir space Songliao basin Cretaceous Qingshankou formation
下载PDF
Establishment of an astronomical time scale for the Shizigou Formation in the Qaidam Basin,Inner Asia and orbital forced evolution of lakes during The Pliocene
8
作者 DunZhu JiaoBa MingZhen Zhang +6 位作者 GuoLong Liu JianGuo Hui ShaoHua Lin AiJing Li Jing Zhang Jing Peng YiQiao Fu 《Research in Cold and Arid Regions》 CSCD 2023年第5期239-252,共14页
The Qaidam Basin,as the largest inland basin within the Tibetan Plateau,has accumulated more than 10,000 m of Cenozoic continental sediments.It serves as a crucial research area for documenting Cenozoic climate change... The Qaidam Basin,as the largest inland basin within the Tibetan Plateau,has accumulated more than 10,000 m of Cenozoic continental sediments.It serves as a crucial research area for documenting Cenozoic climate changes and plateau uplift processes in the Asian interior.Additionally,the basin holds vast reserves of oil and gas resources,making high-resolution drilling data invaluable for studying paleoclimate.In this study,the longsequence lacustrine deposits of JS1 drill core across the Shizigou Formation in the Yiliping Depression at the western center of the basin were studied,aiming to establish an astronomical timescale for the Shizigou Formation and investigate the characteristics of paleoclimatic changes during the late Miocene to the Pliocene for the Asian interior.The analysis was carried out using high-resolution natural gamma ray(GR)data sequences,employing techniques such as spectral analysis,filtering,and wavelet analysis in cyclostratigraphy.The results indicated the presence of a stable Milankovitch orbital signal was perfectly recorded in the Shizigou Formation,primarily influenced by eccentricity cycles,with weaker obliquity and precession cycles.Using the stable and continuous 405 ka eccentricity cycle in astronomical tuning,a"floating"astronomical timescale with a duration of 6.1 Ma for the Yiliping depression's Shizigou Formation has been established.With reference to previously established stratigraphic age anchor points,an absolute astronomical timescale(2.5–8.6 Ma)has been ultimately provided for the Shizigou Formation.Simultaneously,a clear 100 ka short eccentricity cycle record has been identified during the Pliocene(5.3–2.5 Ma),which corresponds in time with the aridification within the basin during this Pliocene period.In addition,a comparison of the Pliocene natural gamma ray curve of the Qaidam Basin with global ice volume variations indicated that the basin's aridification was influenced by global cooling,with eccentricity-modulated precession cycles controlling solar radiation and subsequently affecting the evolution of lakes in the arid region of Inner Asia. 展开更多
关键词 Qaidam basin Shizigou formation Astronomical time scale Astronomical tuning~100 ka orbital eccentricity
下载PDF
Multiple enrichment mechanisms of organic matter in the Fengcheng Formation of Mahu Sag,Junggar Basin,NW China 被引量:1
9
作者 GONG Deyu LIU Zeyang +4 位作者 HE Wenjun ZHOU Chuanmin QIN Zhijun WEI Yanzhao YANG Chun 《Petroleum Exploration and Development》 SCIE 2024年第2期292-306,共15页
Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic compositio... Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic composition,major and trace element contents,as well as petrology.Two zircon U-Pb ages of(306.0±5.2)Ma and(303.5±3.7)Ma were obtained from the first member of the Fengcheng Formation.Combined with carbon isotopic stratigraphy,it is inferred that the depositional age of the Fengcheng Formation is about 297-306 Ma,spanning the Carboniferous-Permian boundary and corresponding to the interglacial period between C4 and P1 glacial events.Multiple increases in Hg/TOC ratios and altered volcanic ash were found in the shale rocks of the Fengcheng Formation,indicating that multiple phases of volcanic activity occurred during its deposition.An interval with a high B/Ga ratio was found in the middle of the second member of the Fengcheng Formation,associated with the occurrence of evaporite minerals and reedmergnerite,indicating that the high salinity of the water mass was related to hydrothermal activity.Comprehensive analysis suggests that the warm and humid climate during the deposition of Fengcheng Formation is conducive to the growth of organic matter such as algae and bacteria in the lake,and accelerates the continental weathering,driving the input of nutrients.Volcanic activities supply a large amount of nutrients and stimulate primary productivity.The warm climate and high salinity are conducive to water stratification,leading to water anoxia that benefits organic matter preservation.The above factors interact and jointly control the enrichment of organic matter in the Fengcheng Formation of Mahu Sag. 展开更多
关键词 Junggar basin Mahu Sag Fengcheng formation organic matter interglacial period VOLCANISM paleo-salinity paleo-environmental evolution
下载PDF
Geological characteristics and exploration breakthroughs of coal rock gas in Carboniferous Benxi Formation,Ordos Basin,NW China 被引量:2
10
作者 ZHAO Zhe XU Wanglin +8 位作者 ZHAO Zhenyu YI Shiwei YANG Wei ZHANG Yueqiao SUN Yuanshi ZHAO Weibo SHI Yunhe ZHANG Chunlin GAO Jianrong 《Petroleum Exploration and Development》 SCIE 2024年第2期262-278,共17页
To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal ro... To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China. 展开更多
关键词 coal rock gas coalbed methane medium-to-high rank coal CLEAT Ordos basin Carboniferous Benxi formation risk exploration
下载PDF
Reservoir characteristics and formation model of Upper Carboniferous bauxite series in eastern Ordos Basin,NW China 被引量:1
11
作者 LI Yong WANG Zhuangsen +2 位作者 SHAO Longyi GONG Jiaxun WU Peng 《Petroleum Exploration and Development》 SCIE 2024年第1期44-53,共10页
Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore charact... Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems. 展开更多
关键词 North China Craton eastern Ordos basin Upper Carboniferous bauxite series reservoir characteristics formation model gas accumulation
下载PDF
Natural gas exploration potential and favorable targets of Permian Fengcheng Formation in the western Central Depression of Junggar Basin,NW China 被引量:1
12
作者 TANG Yong HU Suyun +4 位作者 GONG Deyu YOU Xincai LI Hui LIU Hailei CHEN Xuan 《Petroleum Exploration and Development》 SCIE 2024年第3期563-575,共13页
Based on the organic geochemical data and the molecular and stable carbon isotopic compositions of natural gas of the Lower Permian Fengcheng Formation in the western Central Depression of Junggar Basin,combined with ... Based on the organic geochemical data and the molecular and stable carbon isotopic compositions of natural gas of the Lower Permian Fengcheng Formation in the western Central Depression of Junggar Basin,combined with sedimentary environment analysis and hydrocarbon-generating simulation,the gas-generating potential of the Fengcheng source rock is evaluated,the distribution of large-scale effective source kitchen is described,the genetic types of natural gas are clarified,and four types of favorable exploration targets are selected.The results show that:(1)The Fengcheng Formation is a set of oil-prone source rocks,and the retained liquid hydrocarbon is conducive to late cracking into gas,with characteristics of high gas-generating potential and late accumulation;(2)The maximum thickness of Fengcheng source rock reaches 900 m.The source rock has entered the main gas-generating stage in Penyijingxi and Shawan sags,and the area with gas-generating intensity greater than 20×10^(8) m^(3)/km^(2) is approximately 6500 km^(2).(3)Around the western Central Depression,highly mature oil-type gas with light carbon isotope composition was identified to be derived from the Fengcheng source rocks mainly,while the rest was coal-derived gas from the Carboniferous source rock;(4)Four types of favorable exploration targets with exploration potential were developed in the western Central Depression which are structural traps neighboring to the source,stratigraphic traps neighboring to the source,shale-gas type within the source,and structural traps within the source.Great attention should be paid to these targets. 展开更多
关键词 Junggar basin western Central Depression Lower Permian Fengcheng formation gas-generating potential gas-source correlation exploration target
下载PDF
Discovery and inspiration of large-and medium-sized glutenite-rich oil and gas fields in the eastern South China Sea:An example from Paleogene Enping Formation in Huizhou 26 subsag,Pearl River Mouth Basin 被引量:1
13
作者 XU Changgui GAO Yangdong +4 位作者 LIU Jun PENG Guangrong LIU Pei XIONG Wanlin SONG Penglin 《Petroleum Exploration and Development》 SCIE 2024年第1期15-30,共16页
Based on the practice of oil and gas exploration in the Huizhou Sag of the Pearl River Mouth Basin,the geochemical indexes of source rocks were measured,the reservoir development morphology was restored,the rocks and ... Based on the practice of oil and gas exploration in the Huizhou Sag of the Pearl River Mouth Basin,the geochemical indexes of source rocks were measured,the reservoir development morphology was restored,the rocks and minerals were characterized microscopically,the measured trap sealing indexes were compared,the biomarker compounds of crude oil were extracted,the genesis of condensate gas was identified,and the reservoir-forming conditions were examined.On this basis,the Paleogene Enping Formation in the Huizhou 26 subsag was systematically analyzed for the potential of oil and gas resources,the development characteristics of large-scale high-quality conglomerate reservoirs,the trapping effectiveness of faults,the hydrocarbon migration and accumulation model,and the formation conditions and exploration targets of large-and medium-sized glutenite-rich oil and gas fields.The research results were obtained in four aspects.First,the Paleogene Wenchang Formation in the Huizhou 26 subsag develops extensive and thick high-quality source rocks of semi-deep to deep lacustrine subfacies,which have typical hydrocarbon expulsion characteristics of"great oil generation in the early stage and huge gas expulsion in the late stage",providing a sufficient material basis for hydrocarbon accumulation in the Enping Formation.Second,under the joint control of the steep slope zone and transition zone of the fault within the sag,the large-scale near-source glutenite reservoirs are highly heterogeneous,with the development scale dominated hierarchically by three factors(favorable facies zone,particle component,and microfracture).The(subaqueous)distributary channels near the fault system,with equal grains,a low mud content(<5%),and a high content of feldspar composition,are conducive to the development of sweet spot reservoirs.Third,the strike-slip pressurization trap covered by stable lake flooding mudstone is a necessary condition for oil and gas preservation,and the NE and nearly EW faults obliquely to the principal stress have the best control on traps.Fourth,the spatiotemporal configuration of high-quality source rocks,fault transport/sealing,and glutenite reservoirs controls the degree of hydrocarbon enrichment.From top to bottom,three hydrocarbon accumulation units,i.e.low-fill zone,transition zone,and high-fill zone,are recognized.The main area of the channel in the nearly pressurized source-connecting fault zone is favorable for large-scale hydrocarbon enrichment.The research results suggest a new direction for the exploration of large-scale glutenite-rich reservoirs in the Enping Formation of the Pearl River Mouth Basin,and present a major breakthrough in oil and gas exploration. 展开更多
关键词 Pearl River Mouth basin Huizhou Sag Huizhou 26 subsag PALEOGENE Enping formation GLUTENITE large-and medium-sized oil and gas field
下载PDF
Characteristics and control factors of feldspar dissolution in gravity flow sandstone of Chang 7 Member,Triassic Yanchang Formation,Ordos Basin,NW China 被引量:1
14
作者 ZHU Haihua ZHANG Qiuxia +4 位作者 DONG Guodong SHANG Fei ZHANG Fuyuan ZHAO Xiaoming ZHANG Xi 《Petroleum Exploration and Development》 SCIE 2024年第1期114-126,共13页
To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Memb... To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly. 展开更多
关键词 gravity flow sandstone differential feldspar dissolution mica-feldspar dissolution experiment Chang 7 Member of Triassic Yanchang formation Ordos basin
下载PDF
Microfacies and diagenetic alteration in a semi-deep to deep lacustrine shale: The Yanchang Formation in the Ordos Basin, China
15
作者 Bin Bai Jing-Yue Hao +5 位作者 Ling Fu Yu-Xi Liu Jian-Peng Wang Lan Wang Kevin GTaylor Lin Ma 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1524-1538,共15页
The mineralogical development and diagenetic sequence of lacustrine shales in the Chang 7 Member of the Yanchang Formation in the Ordos Basin are detailed studied.A model of their depositional system and a diagenetic ... The mineralogical development and diagenetic sequence of lacustrine shales in the Chang 7 Member of the Yanchang Formation in the Ordos Basin are detailed studied.A model of their depositional system and a diagenetic diagram are proposed in this study.Through detailed petrographic,mineralogical,and elemental analyses,four distinct shale types are identified:argillaceous shale,siliceous shale,calcareous shale,and carbonate,clay,and silt-bearing shale.The main diagenetic process in argillaceous shale is the transformation of illite to smectite,negatively impacting shale porosity.Siliceous shale undergoes carbonate cementation and quartz dissolution,contributing to increased porosity,particularly in mesopores.Calcareous shale experiences diagenesis characterised by carbonate formation and dissolution,with a prevalence of siderite.In carbonate,clay,and silt-bearing shale,the dissolution of K-feldspar contributes to illitization of kaolinite.Argillaceous shale,characterised by more clay minerals and lower mesopore volume,is identified as a potential hydrocarbon seal.Siliceous shale,with the highest pore volume and abundant inter-mineral pores,emerges as a promising shale oil reservoir.These findings contribute to a comprehensive understanding of shale properties,aiding in the prediction of shale oil exploration potential in the studied area. 展开更多
关键词 Ordos basin Yanchang formation Chang 7 Member DIAGENESIS MICROFACIES
下载PDF
The Lower Cambrian Xiaoerbulake Formation in the Tarim Basin as a potential carbonate source rock
16
作者 Miaoqing Miao Zhichao Sun +9 位作者 Zongan Xue Miao Miao Kunpeng Jiang Xuefeng Zhang Zhongkai Bai Xiuxiang Lyu Xingui Zhou Yongjin Gao Miao Han Youxing Yang 《Energy Geoscience》 EI 2024年第2期40-52,共13页
The oil and gas exploration of the Middle and Lower Cambrian in the Tarim Basin reveals widely distributed source rocks with the Yuertusi Formation being recognized as high-quality source rocks that are distributed in... The oil and gas exploration of the Middle and Lower Cambrian in the Tarim Basin reveals widely distributed source rocks with the Yuertusi Formation being recognized as high-quality source rocks that are distributed in a rather small range.The Xiaoerbulake Formation that is right under the Yuertusi Formation has also been eyed as potential high-quality source rocks and is studied through analyses focusing on the stratigraphic development,the abundance,type,and maturity of organic matter,and the paleoproductivity of a dark-colored algae dolomite within the formation.The results show that the dolomite is rich in organic matter of mainly types Ⅰ and Ⅱ kerogens.Although reached the high mature to over-mature stage,the dolomite was deposited in an anoxic sedimentary environment featuring a high paleoproductivity level and a high organic carbon burial efficiency,quite favorable for the development of high-quality source rocks.The study provides material evidence to the Middle-Lower Cambrian subsalt source rock-reservoir-caprock combination model for the Tarim Basin. 展开更多
关键词 Source rock Algal dolomite Yuertusi formation Xiaoerbulake formation Tarim basin
下载PDF
Evolution and Application of Sealing Ability of Gypsum Caprocks under Temperature-Pressure Coupling:An Example of the ZS5 Well in the Tazhong Area of the Tarim Basin
17
作者 LIU Hua ZHAO Shan +3 位作者 YANG Xianzhang ZHU Yongfeng WANG Shen ZHANG Ke 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第1期168-184,共17页
Gypsum caprocks'sealing ability is affected by temperature-pressure coupling.Due to the limitations of experimental conditions,there is still a lack of triaxial stress-strain experiments that simultaneously consid... Gypsum caprocks'sealing ability is affected by temperature-pressure coupling.Due to the limitations of experimental conditions,there is still a lack of triaxial stress-strain experiments that simultaneously consider changes in temperature and pressure conditions,which limits the accuracy of the comprehensive evaluation of the brittle plastic evolution and sealing ability of gypsum rocks using temperature pressure coupling.Triaxial stress-strain tests were utilized to investigate the differences in the evolution of the confinement capacity of gypsum rocks under coupled temperaturepressure action and isothermal-variable pressure action on the basis of sample feasibility analysis.According to research,the gypsum rock's peak and residual strengths decrease under simultaneous increases in temperature and pressure over isothermal pressurization experimental conditions,and it becomes more ductile.This reduces the amount of time it takes for the rock to transition from brittle to plastic.When temperature is taken into account,both the brittle–plastic transformation's depth limit and the lithological transformation of gypsum rocks become shallower,and the evolution of gypsum rocks under variable temperature and pressure conditions is more complicated than that under isothermal pressurization.The sealing ability under the temperature-pressure coupling is more in line with the actual geological context when the application results of the Well#ZS5 are compared.This provides a theoretical basis for precisely determining the process of hydrocarbon accumulation and explains why the early hydrocarbon were not well preserved. 展开更多
关键词 temperature-pressure coupling gypsum caprocks brittle-plastic evolution sealing capacity Tarim basin
下载PDF
Paleoenvironmental Evolution and Organic Matter Enrichment Genesis of the Late Turonian Black Shale in the Southern Songliao Basin,NE China
18
作者 BAI Jing XU Xingyou +2 位作者 LIU Weibin ZHAO Wenzhi JIANG Hang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第5期1338-1358,共21页
The Upper Cretaceous Qingshankou Formation black shales,deposited in the late Turonian(LTB shales),are the main source rocks of the Songliao Basin.The origins of organic matter enrichment of the shales is a contentiou... The Upper Cretaceous Qingshankou Formation black shales,deposited in the late Turonian(LTB shales),are the main source rocks of the Songliao Basin.The origins of organic matter enrichment of the shales is a contentious subject fuelling many ongoing debates.This study investigates the genesis of the organic matter-rich shale by using molecular geochemistry.The LTB shales can be divided into three sections.The SectionⅠshales were deposited in saline,stratified and anoxic water conditions,which are related to seawater incursion events.At least three episodic and periodic seawater incursion events were recognized during SectionⅠshale deposition.The SectionⅡshales deposited in brackish to fresh and deep lake-level conditions with high primary productivity,which are related to lake-level transgression.The SectionⅢshales were deposited under fresh and slightly oxidized water conditions,which are related to lake-level regression.Two organic matter enrichment models for the LTB shales are identified,that is,the seawater incursion model and the maximum lake-level transgression sedimentation model,which act on different shale sections,both playing significant roles in the enrichment of organic matter. 展开更多
关键词 organic matter-rich shale paleoenvironmental evolution enrichment genetics late Turonian CRETACEOUS Songliao basin
下载PDF
Differences in and factors controlling organic matter enrichment in the Ziliujing Formation shale in the Sichuan Basin
19
作者 Peng Li Zhong-Bao Liu +4 位作者 He Bi Tao Jiang Rui-Kang Bian Peng-Wei Wang Xiao-Yu Shang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期77-86,共10页
Lacustrine shale oil and gas are important fields for unconventional exploration and development in China,and organic-rich shale deposition lays down the critical foundation for hydrocarbon generation.There are two se... Lacustrine shale oil and gas are important fields for unconventional exploration and development in China,and organic-rich shale deposition lays down the critical foundation for hydrocarbon generation.There are two sets of shale,the Dongyuemiao and Da’anzhai Members,in the Ziliujing Formation in the Sichuan Basin.To identify the differential enrichment characteristics of organic matter and clarify its controlling factors,geochemical analyses of organic and inorganic geochemical analyses were performed.The results showed that the total organic carbon content of the Dongyuemiao shale(1.36%)is slightly higher than that of the Da’anzhai shale(0.95%).The enrichment of organic matter in the two shales resulted from the comprehensive controls of paleoproductivity,paleoenvironment,and terrigenous input,but different factors have different effects.In addition,driven by climate,the change in the sulfate concentration in the bottom water further led to the different intensities of bacterial sulfate reduction in early diagenesis.This made a great difference regarding organic matter accumulation in the two members.In general,climate may have played a dominant role in organic matter enrichment in the two sets of shale. 展开更多
关键词 Lacustrine shale Ziliujing formation Sichuan basin Enrichment mechanism of organic matter
下载PDF
Geometry and formation mechanism of tension gashes and their implication on the hydrocarbon accumulation in the deep-seated strata of sedimentary basin:A case from Shunnan area of Tarim Basin
20
作者 Yan-Nan Du Kong-You Wu +4 位作者 Yin Liu Yan-Ying Li Zi-Cheng Cao You-Wei Cui Jun Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期87-99,共13页
With the theoretical and technological developments related to cratonic strike-slip faults,the Shuntuoguole Low Uplift in the Tarim Basin has attracted considerable attention recently.Affected by multi-stage tectonic ... With the theoretical and technological developments related to cratonic strike-slip faults,the Shuntuoguole Low Uplift in the Tarim Basin has attracted considerable attention recently.Affected by multi-stage tectonic movements,the strike-slip faults have controlled the distribution of hydrocarbon resources owing to the special fault characteristics and fault-related structures.In contrast,the kinematics and formation mechanism of strike-slip faults in buried sedimentary basins are difficult to investigate,limiting the discussion of these faults and hydrocarbon accumulation.In this study,we identified the characteristics of massive sigmoidal tension gashes(STGs)that formed in the Shunnan area of the Tarim Basin.High-resolution three-dimensional seismic data and attribute analyses were used to investigate their geometric and kinematic characteristics.Then,the stress state of each point of the STGs was calculated using seismic curvature attributes.Finally,the formation mechanism of the STGs and their roles in controlling hydrocarbon migration and accumulation were discussed.The results suggest that:(1)the STGs developed in the Shunnan area have a wide distribution,with a tensile fault arranged in an enéchelon pattern,showing an S-shaped bending.These STGs formed in multiple stages,and differential rotation occurred along the direction of strike-slip stress during formation.(2)Near the principal displacement zone of the strike-slip faults,the stress value of the STGs was higher,gradually decreasing at both ends.The shallow layer deformation was greater than the deep layer deformation.(3)STGs are critical for connecting source rocks,migrating oil and gas,sealing horizontally,and developing efficient reservoirs.This study not only provides seismic evidence for the formation and evolution of super large STGs,but also provides certain guidance for oil and gas exploration in this area. 展开更多
关键词 Tarim basin Sigmoidal tension gashes Seismic attributes Shear stress calculation formation mechanism Reservoir control
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部