期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Batalin-Vilkovisky Structure on Hochschild Cohomology of Self-Injective Quadratic Monomial Algebras
1
作者 GAO Jin HOU Bo 《Chinese Quarterly Journal of Mathematics》 2021年第3期320-330,共11页
We give a complete description of the Batalin-Vilkovisky algebra structure on Hochschild cohomology of the self-injective quadratic monomial algebras.
关键词 batalin-vilkovisky algebra structure Hochschild cohomology Self-injective quadratic monomial algebra
下载PDF
Batalin-Vilkovisky algebra structures on Hochschild cohomology of generalized Weyl algebras
2
作者 Liyu LIU Wen MA 《Frontiers of Mathematics in China》 SCIE CSCD 2022年第5期915-941,共27页
We devote to the calculation of Batalin–Vilkovisky algebra structures on the Hochschild cohomology of skew Calabi–Yau generalized Weyl algebras.We first establish a Van den Bergh duality at the level of complex.Then... We devote to the calculation of Batalin–Vilkovisky algebra structures on the Hochschild cohomology of skew Calabi–Yau generalized Weyl algebras.We first establish a Van den Bergh duality at the level of complex.Then based on the results of Solotar et al.,we apply Kowalzig and Krähmer's method to the Hochschild homology of generalized Weyl algebras,and translate the homological information into cohomological one by virtue of the Van den Bergh duality,obtaining the desired Batalin–Vilkovisky algebra structures.Finally,we apply our results to quantum weighted projective lines and Podleśquantum spheres,and the Batalin–Vilkovisky algebra structures for them are described completely. 展开更多
关键词 Hochschild cohomology batalin-vilkovisky algebra Van den Bergh duality generalized Weyl algebra
原文传递
BV Structure on Hochschild Cohomology of Quantum Exterior Algebra with Two Variables
3
作者 Bo Hou Jinzhong Wu 《Algebra Colloquium》 SCIE CSCD 2023年第2期205-224,共20页
Let Ag=k(x,y)/(x^(2),xy+qyx,y^(2))over a field k.We give a clear character-ization of the Batalin-Vilkovisky algebraic structure on Hochschild cohomology of A_(q)for any q≠O,and the Gerstenhaber algebraic structure o... Let Ag=k(x,y)/(x^(2),xy+qyx,y^(2))over a field k.We give a clear character-ization of the Batalin-Vilkovisky algebraic structure on Hochschild cohomology of A_(q)for any q≠O,and the Gerstenhaber algebraic structure on Hochschild cohomology of A_(q)for q=0. 展开更多
关键词 batalin-vilkovisky structure quantum exterior algebra Hochschild cohomology
原文传递
弦拓扑的一些最新进展(英文) 被引量:1
4
作者 陈小俊 《数学进展》 CSCD 北大核心 2015年第5期641-674,共34页
弦拓扑是代数拓扑的一个分支,主要研究流形的闭路空间上的代数结构与几何结构.在过去的十多年中,人们发现它跟辛几何、数学物理、非交换几何以及其他很多数学分支有紧密的联系和重要的应用.本文首先介绍弦拓扑产生的背景和它的一些重要... 弦拓扑是代数拓扑的一个分支,主要研究流形的闭路空间上的代数结构与几何结构.在过去的十多年中,人们发现它跟辛几何、数学物理、非交换几何以及其他很多数学分支有紧密的联系和重要的应用.本文首先介绍弦拓扑产生的背景和它的一些重要结果,然后主要集中于讨论它在非交换辛几何、Calabi-Yau范畴、辛拓扑以及辛场论等领域中的应用. 展开更多
关键词 弦拓扑 batalin-vilkovisky代数 Calabi-Yau范畴 辛场论 Fukaya范畴
原文传递
Frobenius Poisson algebras
5
作者 Juan LUO Shengqiang WANG Quanshui WU 《Frontiers of Mathematics in China》 SCIE CSCD 2019年第2期395-420,共26页
This paper is devoted to study Frobenius Poisson algebras. We introduce pseudo-unimodular Poisson algebras by generalizing unimodular Poisson algebras, and investigate Batalin-Vilkovisky structures on their cohomology... This paper is devoted to study Frobenius Poisson algebras. We introduce pseudo-unimodular Poisson algebras by generalizing unimodular Poisson algebras, and investigate Batalin-Vilkovisky structures on their cohomology algebras. For any Frobenius Poisson algebra, all Eatalin-Vilkovisky opera tors on its Poisson cochain complex are described explicitly. It is proved that there exists a Batalin-Vilkovisky operator on its cohomology algebra which is induced from a Batalin-Vilkovisky operator on the Poisson cochain complex, if and only if the Poisson st rue ture is pseudo-unimodular. The relation bet ween modular derivations of polynomial Poisson algebras and those of their truncated Poisson algebras is also described in some cases. 展开更多
关键词 POISSON ALGEBRA FROBENIUS ALGEBRA batalin-vilkovisky ALGEBRA POISSON (co)homology MODULAR DERIVATION
原文传递
The Normalized Cochain Complex of a Nonsymmetric Cyclic Operad with Multiplication is a Quesney Homotopy BV Algebra
6
作者 Weiguo Lyu Guodong Zhou 《Communications in Mathematics and Statistics》 SCIE 2022年第2期299-330,共32页
We show that the normalized cochain complex of a nonsymmetric cyclic operad with multiplication is a Quesney homotopy BV algebra;as a consequence,the cohomology groups form a Batalin-Vilkovisky algebra,which is a resu... We show that the normalized cochain complex of a nonsymmetric cyclic operad with multiplication is a Quesney homotopy BV algebra;as a consequence,the cohomology groups form a Batalin-Vilkovisky algebra,which is a result due to L.Menichi.We provide ample examples. 展开更多
关键词 Nonsymmetric operad Cyclic operad Gerstenhaber-Voronov algebra batalin-vilkovisky algebra Quesney homotopy BV algebra
原文传递
The BV Formalization of Chern-Simons Theory on Deformed Superspace
7
作者 Mir Faizal 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第11期704-710,共7页
In this paper we will study non-abelian Chern-Simons theory on a deformed superspace. We will deform the superspace in such a way that it includes the noncommutativity between bosonic and fermionic coordinates. We wil... In this paper we will study non-abelian Chern-Simons theory on a deformed superspace. We will deform the superspace in such a way that it includes the noncommutativity between bosonic and fermionic coordinates. We will first analyse the BRST and the anti-BRST symmetries of the Chern-imons theory on this deformed superspace. Then we will analyse the extended BRST and the extended anti-BRST symmetries of this theory in the Batalin-Vilkovisky (BV) formalism. Finally, we will express these extended BRST and extended anti-BRST symmetries in extended superspace formalism by introducing new Grassmann coordinates. 展开更多
关键词 noncommutative superspace batalin-vilkovisky formalism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部