期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
On-line Batch Process Monitoring with Improved Multi-way Independent Component Analysis 被引量:14
1
作者 郭辉 李宏光 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第3期263-270,共8页
In the past decades, on-line monitoring of batch processes using multi-way independent component analysis (MICA) has received considerable attention in both academia and industry. This paper focuses on two troubleso... In the past decades, on-line monitoring of batch processes using multi-way independent component analysis (MICA) has received considerable attention in both academia and industry. This paper focuses on two troublesome issues concerning selecting dominant independent components without a standard criterion and deter- mining the control limits of monitoring statistics in the presence of non-Gaussian distribution. To optimize the number of key independent components~ we introctuce-anoveiconcept of-system-cleviation, which is ab^e'io'evalu[ ate the reconstructed observations with different independent components. The monitored statistics arc transformed to Gaussian distribution data by means of Box-Cox transformation, which helps readily determine the control limits. The proposed method is applied to on-line monitoring of a fed-hatch penicillin fermentation simulator, and the ex- _perimental results indicate the advantages of the improved MICA monitoring compared to the conventional methods. 展开更多
关键词 batch process monitoring multi-way independent componerxt analysis system deviation Box-Coxtransformation
下载PDF
Double Moving Window MPCA for Online Adaptive Batch Monitoring 被引量:5
2
作者 赵立杰 柴天佑 王纲 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第5期649-655,共7页
Online monitoring of chemical process performance is extremely important to ensure the safety of a chemical plant and consistently high quality of products. Multivariate statistical process control has found wide appl... Online monitoring of chemical process performance is extremely important to ensure the safety of a chemical plant and consistently high quality of products. Multivariate statistical process control has found wide applications in process performance analysis, monitoring and fault diagnosis using existing rich historical database.In this paper, we propose a simple and straight forward multivariate statistical modeling based on a moving window MPCA (multiway principal component analysis) model along the time and batch axis for adaptive monitoring the progress of batch processes in real-time. It is an extension to minimum window MPCA and traditional MPCA.The moving window MPCA along the batch axis can copy seamlessly with variable run length and does not need to estimate any deviations of the ongoing batch from the average trajectories. It replaces an invariant fixed-model monitoring approach with adaptive updating model data structure within batch-to-batch, which overcomes the changing operation condition and slows time-varying behaviors of industrial processes. The software based on moving window MPCA has been successfully applied to the industrial polymerization reactor of polyvinyl chloride (PVC) process in the Jinxi Chemical Company of China since 1999. 展开更多
关键词 moving window multiway principal component analysis batch monitoring
下载PDF
A Robust Statistical Batch Process Monitoring Framework and Its Application 被引量:4
3
作者 谢磊 张建明 王树青 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第5期682-687,共6页
In order to reduce the variations of the product quality in batch processes, multivariate statistical process control methods according to multi-way principal component analysis (MPCA) or multi-way projection to laten... In order to reduce the variations of the product quality in batch processes, multivariate statistical process control methods according to multi-way principal component analysis (MPCA) or multi-way projection to latent structure (MPLS) were proposed for on-line batch process monitoring. However, they are based on the decomposition of relative covariance matrix and strongly affected by outlying observations. In this paper, in view of an efficient projection pursuit algorithm, a robust statistical batch process monitoring (RSBPM) framework,which is resistant to outliers, is proposed to reduce the high demand for modeling data. The construction of robust normal operating condition model and robust control limits are discussed in detail. It is evaluated on monitoring an industrial streptomycin fermentation process and compared with the conventional MPCA. The results show that the RSBPM framework is resistant to possible outliers and the robustness is confirmed. 展开更多
关键词 robust statistical batch process monitoring robust principal componentanalysis streptomycin fermentation robust multi-way principal component analysis
下载PDF
Batch process monitoring based on multilevel ICA-PCA 被引量:3
4
作者 Zhi-qiang GE Zhi-huan SONG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第8期1061-1069,共9页
In this paper, we describe a new batch process monitoring method based on multilevel independent component analysis and principal component analysis (MLICA-PCA). Unlike the conventional multi-way principal component a... In this paper, we describe a new batch process monitoring method based on multilevel independent component analysis and principal component analysis (MLICA-PCA). Unlike the conventional multi-way principal component analysis (MPCA) method, MLICA-PCA provides a separated interpretation for multilevel batch process data. Batch process data are partitioned into two levels: the within-batch level and the between-batch level. In each level, the Gaussian and non-Gaussian components of process information can be separately extracted. I2, T2 and SPE statistics are individually built and monitored. The new method facilitates fault diagnosis. Since the two variation levels are decomposed, the variables responsible for faults in each level can be identified and interpreted more easily. A case study of the Dupont benchmark process showed that the proposed method was more efficient and interpretable in fault detection and diagnosis, compared to the alternative batch process monitoring method. 展开更多
关键词 MULTILEVEL Independent component analysis (ICA) Principal component analysis (PCA) batch process monitoring NON-GAUSSIAN
下载PDF
Online Batch Process Monitoring Based on Just-in-Time Learning and Independent Component Analysis 被引量:1
5
作者 WANG Li SHI Hong-bo 《Journal of Donghua University(English Edition)》 EI CAS 2016年第6期944-948,共5页
A new method was developed for batch process monitoring in this paper. In the devdopad method, just-in-time learning ( JITL ) and independent component analysis (ICA) were integrated to build JITL-ICA monitoring s... A new method was developed for batch process monitoring in this paper. In the devdopad method, just-in-time learning ( JITL ) and independent component analysis (ICA) were integrated to build JITL-ICA monitoring scheme. JITL was employed to tackle with the characteristics of batch process such as inherent time- varying dynamics, multiple operating phases, and especially the case of uneven length stage. According to new coming test data, the most correlated segmentation was obtained from batch-wise unfolded training data by JITL. Then, ICA served as the principal components extraction approach. Therefore, the non.Gaussian distributed data can also be addressed under this modeling framework. The effectiveness and superiority of JITL-ICA based monitoring method was demonstrated by fed-batch penicillin fermentation. 展开更多
关键词 batch process monitoring just-in-time learning(JITL) independent component analysis(ICA)
下载PDF
Monitoring and Fault Diagnosis for Batch Process Based on Feature Extract in Fisher Subspace
6
作者 赵旭 阎威武 邵惠鹤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第6X期759-764,共6页
Multivariate statistical process control methods have been widely used in biochemical industries. Batch process is usually monitored by the method of multi-way principal component analysis (MPCA). In this article, a n... Multivariate statistical process control methods have been widely used in biochemical industries. Batch process is usually monitored by the method of multi-way principal component analysis (MPCA). In this article, a new batch process monitoring and fault diagnosis method based on feature extract in Fisher subspace is proposed. The feature vector and the feature direction are extracted by projecting the high-dimension process data onto the low-dimension Fisher space. The similarity of feature vector between the current and the reference batch is calcu- lated for on-line process monitoring and the contribution plot of weights in feature direction is calculated for fault diagnosis. The approach overcomes the need for estimating or filling in the unknown portion of the process vari- ables trajectories from the current time to the end of the batch. Simulation results on the benchmark model of peni- cillin fermentation process can demonstrate that in comparison to the MPCA method, the proposed method is more accurate and efficient for process monitoring and fault diagnosis. 展开更多
关键词 batch monitoring fault diagnosis feature extract Fisher discriminant analysis penicillin fermentation process
下载PDF
An Improved Adaptive Multi-way Principal Component Analysis for Monitoring Streptomycin Fermentation Process 被引量:8
7
作者 何宁 王树青 谢磊 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第1期96-101,共6页
Multi-way principal component analysis (MPCA) had been successfully applied to monitoring the batch and semi-batch process in most chemical industry. An improved MPCA approach, step-by-step adaptive MPCA (SAMPCA), usi... Multi-way principal component analysis (MPCA) had been successfully applied to monitoring the batch and semi-batch process in most chemical industry. An improved MPCA approach, step-by-step adaptive MPCA (SAMPCA), using the process variable trajectories to monitoring the batch process is presented in this paper. It does not need to estimate or fill in the unknown part of the process variable trajectory deviation from the current time until the end. The approach is based on a MPCA method that processes the data in a sequential and adaptive manner. The adaptive rate is easily controlled through a forgetting factor that controls the weight of past data in a summation. This algorithm is used to evaluate the industrial streptomycin fermentation process data and is compared with the traditional MPCA. The results show that the method is more advantageous than MPCA, especially when monitoring multi-stage batch process where the latent vector structure can change at several points during the batch. 展开更多
关键词 step-by-step adaptive multi-way principal component analysis batch monitoring streptomycin fermentation static process monitoring
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部