期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向工业入侵检测的数据增强与特征提取的研究 被引量:1
1
作者 宗学军 金琼 李鹏程 《计算机应用与软件》 北大核心 2023年第6期315-322,共8页
随着工业控制网络(Industrial Control Network,ICN)高速发展,ICN安全已经是全球性重要问题之一,工业入侵检测作为一种ICN安全防护技术成为研究热点。在工业入侵检测中,由于ICN数据存在攻击样本不平衡、特征维度高的问题,提出一种辅助... 随着工业控制网络(Industrial Control Network,ICN)高速发展,ICN安全已经是全球性重要问题之一,工业入侵检测作为一种ICN安全防护技术成为研究热点。在工业入侵检测中,由于ICN数据存在攻击样本不平衡、特征维度高的问题,提出一种辅助生成对抗网络(Auxiliary Classifier Generative Adversarial Networks,ACGAN)与正则化堆栈稀疏自编码器(Batch Normalization Stacked Sparse Auto-Encoder,BN-SSAE)相结合的深度学习方法,运用ACGAN数据增强和BN-SSAE深层次特征提取解决上述问题,再使用多层感知机(MultiLayer Perceptron,MLP)进行分类,得到入侵检测结果。以ACGAN、BN-SSAE和MLP为基础建立工业入侵检测模型,使用密西西比州立大学数据集进行实验,结果表明该模型符合工业入侵检测的要求。利用加拿大网络安全研究所的CICIDS2017数据集进行验证,证明该模型在工业入侵检测中具有可行性和有效性。 展开更多
关键词 工业控制网络 辅助生成对抗网络 数据增强 正则化堆栈稀疏自编码器 特征提取
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部