Pinus massoniana L. was thermally treated with low melting point alloy as heating medium to investigate the strength properties changes. Contact angle, color and scanning electron microscopy were recorded to assess th...Pinus massoniana L. was thermally treated with low melting point alloy as heating medium to investigate the strength properties changes. Contact angle, color and scanning electron microscopy were recorded to assess the effectiveness of the treatment. Samples were pre-treated in a micro-wave for 5 min followed by metal bath heat treatment at 150, 180, and 210 °C for 2, 4, and 8 h,respectively. Strength properties of metal bath treated wood were decreased with increase temperature and time.Density, modulus of rupture, impact bending, modulus of elasticity were reduced for all treatments. Maximum compressive strength slightly increased at 150 °C for 4 h followed by gradual reduction. The Janka hardness was reduced in the tangential and radial directions. Treatment of the wood at 210 °C for 8 h caused the wood to become brittle and rupture. The contact angle was considerably higher after thermal treatment. The color of the wood became darker with increasing temperature of thermal treatment. Micrographs of the heat-treated samples showed damage to the cell wall with increase in temperature. Metal bath heat treatment of wood was carried out successfully and some strength properties were reduced.展开更多
There are lots of residual nickel and organic compounds in the spent electroless nickel plating bath. It not only wastes resource but also causes environmental pollution if the wastewater is discharged without treatme...There are lots of residual nickel and organic compounds in the spent electroless nickel plating bath. It not only wastes resource but also causes environmental pollution if the wastewater is discharged without treatment. In this paper, electrolytic method and reduction method for treating spent electroless nickel plating bath were compared. The factors studied included reaction time, pH, temperature, effectiveness and cost. It was found that the recovery rate of nickel by reduction was 99.9% under the condition ofpH 6, 50℃ for 10 min. The purity of reclaimed nickel was 66.1%. This treatment needed about 16 g NaBH4 for a liter spent solution, which cost RMB 64 Yuan. For electrolysis method, with pH 7.6, 80℃, 0.45 A (current intensity) for 2 h, the recovery rate reached 97.3%. The purity was 88.5% for the reclaimed nickel. Moreover, it was found that through electrolysis, the value of TOC (Total Organic Carbon) decreased from 114 to 3.08 g·L^-1 with removal rate of 97.3%. The main cost of electrolysis came from electric energy. It cost about 0.09 kWh (less than RMB 0.1 Yuan) per liter wastewater. Compared with reduction, electrolysis had more advantages, so the priority of selection should be given to the electrolysis method for the treatment of spent electroless nickel plating bath.展开更多
The electrochemical method was used to remove nickel ion from spent electroless nickel plating bath (pH=5 3). An electrolytic cell was composed of a porous nickel foam cathode and an inert RuO 2/Ti anode. Nickel ions ...The electrochemical method was used to remove nickel ion from spent electroless nickel plating bath (pH=5 3). An electrolytic cell was composed of a porous nickel foam cathode and an inert RuO 2/Ti anode. Nickel ions were reduced and deposited on the surface of the nickel foam cathode. The effect of current density (i), linear velocity of wastewater(v), gap between cathode and anode(d C/A) and reaction time(t) on nickel removal rate and current efficiency were studied. As reaction time prolonged, nickel removal rate increased while current efficiency decreased. And larger v and smaller d C/A can enhance nickel removal rate and increase current efficiency by promoting mass transfer and dropping concentration polarization. The effect of current density on nickel removal by electrochemistry was related to other parameters. After three hours’ electrolysis with i=1 0 A/dm2, v=18 5 cm/min and d C/A=0 5 cm, nickel removal rate and current efficiency reached 85 6% and 29 1%, respectively.展开更多
基金financially supported by the Special Scientific Research Fund for Public Service Sectors of Forestry(Grant No.201504603)Science and Technology Projects of Fujian Province(2014NZ003)the National Natural Science Foundation of China(Grant Nos.31370560,31170520)
文摘Pinus massoniana L. was thermally treated with low melting point alloy as heating medium to investigate the strength properties changes. Contact angle, color and scanning electron microscopy were recorded to assess the effectiveness of the treatment. Samples were pre-treated in a micro-wave for 5 min followed by metal bath heat treatment at 150, 180, and 210 °C for 2, 4, and 8 h,respectively. Strength properties of metal bath treated wood were decreased with increase temperature and time.Density, modulus of rupture, impact bending, modulus of elasticity were reduced for all treatments. Maximum compressive strength slightly increased at 150 °C for 4 h followed by gradual reduction. The Janka hardness was reduced in the tangential and radial directions. Treatment of the wood at 210 °C for 8 h caused the wood to become brittle and rupture. The contact angle was considerably higher after thermal treatment. The color of the wood became darker with increasing temperature of thermal treatment. Micrographs of the heat-treated samples showed damage to the cell wall with increase in temperature. Metal bath heat treatment of wood was carried out successfully and some strength properties were reduced.
基金Supported by National Natural Science Foundation of China (59870469)Homecoming Foundation of Heilongjiang Province (LC06C04)Researcher Overseas Foundation of the Department of Education of Heilongjiang Province (1152hq19)
文摘There are lots of residual nickel and organic compounds in the spent electroless nickel plating bath. It not only wastes resource but also causes environmental pollution if the wastewater is discharged without treatment. In this paper, electrolytic method and reduction method for treating spent electroless nickel plating bath were compared. The factors studied included reaction time, pH, temperature, effectiveness and cost. It was found that the recovery rate of nickel by reduction was 99.9% under the condition ofpH 6, 50℃ for 10 min. The purity of reclaimed nickel was 66.1%. This treatment needed about 16 g NaBH4 for a liter spent solution, which cost RMB 64 Yuan. For electrolysis method, with pH 7.6, 80℃, 0.45 A (current intensity) for 2 h, the recovery rate reached 97.3%. The purity was 88.5% for the reclaimed nickel. Moreover, it was found that through electrolysis, the value of TOC (Total Organic Carbon) decreased from 114 to 3.08 g·L^-1 with removal rate of 97.3%. The main cost of electrolysis came from electric energy. It cost about 0.09 kWh (less than RMB 0.1 Yuan) per liter wastewater. Compared with reduction, electrolysis had more advantages, so the priority of selection should be given to the electrolysis method for the treatment of spent electroless nickel plating bath.
文摘The electrochemical method was used to remove nickel ion from spent electroless nickel plating bath (pH=5 3). An electrolytic cell was composed of a porous nickel foam cathode and an inert RuO 2/Ti anode. Nickel ions were reduced and deposited on the surface of the nickel foam cathode. The effect of current density (i), linear velocity of wastewater(v), gap between cathode and anode(d C/A) and reaction time(t) on nickel removal rate and current efficiency were studied. As reaction time prolonged, nickel removal rate increased while current efficiency decreased. And larger v and smaller d C/A can enhance nickel removal rate and increase current efficiency by promoting mass transfer and dropping concentration polarization. The effect of current density on nickel removal by electrochemistry was related to other parameters. After three hours’ electrolysis with i=1 0 A/dm2, v=18 5 cm/min and d C/A=0 5 cm, nickel removal rate and current efficiency reached 85 6% and 29 1%, respectively.