The increasing drive towards eco-friendly environment motivates the generation of energy from renewable energy sources (RESs). The rising share of RESs in power generation poses potential challenges, including uncerta...The increasing drive towards eco-friendly environment motivates the generation of energy from renewable energy sources (RESs). The rising share of RESs in power generation poses potential challenges, including uncertainties in generation output, frequency fluctuations, and insufficient voltage regulation capabilities. As a solution to these challenges, energy storage systems (ESSs) play a crucial role in storing and releasing power as needed. Battery energy storage systems (BESSs) provide significant potential to maximize the energy efficiency of a distribution network and the benefits of different stakeholders. This can be achieved through optimizing placement, sizing, charge/discharge scheduling, and control, all of which contribute to enhancing the overall performance of the network. In this paper, we provide a comprehensive overview of BESS operation, optimization, and modeling in different applications, and how mathematical and artificial intelligence (AI)-based optimization techniques contribute to BESS charging and discharging scheduling. We also discuss some potential future opportunities and challenges of the BESS operation, AI in BESSs, and how emerging technologies, such as internet of things, AI, and big data impact the development of BESSs.展开更多
Battery energy storage system(BESS)is one of the effective technologies to deal with power fluctuation and intermittence resulting from grid integration of large renewable generations.In this paper,the system configur...Battery energy storage system(BESS)is one of the effective technologies to deal with power fluctuation and intermittence resulting from grid integration of large renewable generations.In this paper,the system configuration of a China’s national renewable generation demonstration project combining a large-scale BESS with wind farm and photovoltaic(PV)power station,all coupled to a power transmission system,is introduced,and the key technologies including optimal control and management as well as operational status of this BESS are presented.Additionally,the technical benefits of such a large-scale BESS in dealing with power fluctuation and intermittence issues resulting from grid connection of large-scale renewable generation,and for improvement of operation characteristics of transmission grid,are discussed with relevant case studies.展开更多
Integrating a battery energy storage system(ESS)with a large wind farm can smooth the intermittent power obtained from the wind farm,but the smoothing function will not be achieved if multiple ESSs are used to smooth ...Integrating a battery energy storage system(ESS)with a large wind farm can smooth the intermittent power obtained from the wind farm,but the smoothing function will not be achieved if multiple ESSs are used to smooth the fluctuations in individual wind power plants in a distributed pattern.Therefore,this study focuses on the development of a control strategy to optimize the use of multiple ESSs to accelerate the adoption of wind energy resources.This paper proposes a quasi-automated generation control(QAGC)strategy to coordinate multiple ESSs,which responds to the grid dispatch demand rather than smoothing out the intermittent power from individual wind farms.The aims of QAGC are to ensure that multiple ESSs provide a service that is as balanced as possible,so more wind power systems at various scales can be accepted by the grid,as well maximizing the low-carbon benefits of ESSs.The effectiveness of QAGC is demonstrated by using data from an actual gigawatt scale cluster of wind plants.展开更多
This paper presents a series of operating schedules for Battery Energy Storage Companies(BESC)to provide peak shaving and spinning reserve services in the electricity markets under increasing wind penetration.As indiv...This paper presents a series of operating schedules for Battery Energy Storage Companies(BESC)to provide peak shaving and spinning reserve services in the electricity markets under increasing wind penetration.As individual market participants,BESC can bid in ancillary services markets in an Independent System Operator(ISO)and contribute towards frequency and voltage support in the grid.Recent development in batteries technologies and availability of the day-ahead spot market prices would make BESC economically feasible.Profit maximization of BESC is achieved by determining the optimum capacity of Energy Storage Systems(ESS)required for meeting spinning reserve requirements as well as peak shaving.Historic spot market prices and frequency deviations from Australia Energy Market Operator(AEMO)are used for numerical simulations and the economic benefits of BESC is considered reflecting various aspects in Australia’s National Electricity Markets(NEM).展开更多
Recent advances in battery energy storage technologies enable increasing number of photovoltaic-battery energy storage systems(PV-BESS)to be deployed and connected with current power grids.The reliable and efficient u...Recent advances in battery energy storage technologies enable increasing number of photovoltaic-battery energy storage systems(PV-BESS)to be deployed and connected with current power grids.The reliable and efficient utilization of BESS imposes an obvious technical challenge which needs to be urgently addressed.In this paper,the optimal operation of PV-BESS based power plant is investigated.The operational scenarios are firstly partitioned using a self-organizing map(SOM)clustering based approach.The revenue optimization model is adopted for the PV-BESS power plants to determine the optimal operational modes under typical conditions for a set of considerations,e.g.power generation revenue,assessing rewards/penalties as well as peak shaving/valley filling revenue.The solution is evaluated through a set of case studies,and the numerical result demonstrates the effectiveness of the suggested solution can optimally operate the BESS with the maximal revenue.展开更多
Network frequency control function is incorporated into a grid-connected wind farm-dual battery energy storage system(BESS)scheme.The design of the scheme takes advantage of the rapid response characteristics of the B...Network frequency control function is incorporated into a grid-connected wind farm-dual battery energy storage system(BESS)scheme.The design of the scheme takes advantage of the rapid response characteristics of the BESS and the in-built short-term overloading capability of the associated power conversion devices.A control strategy to regulate the BESS output power is then proposed.It is shown that the frequency control action offered by the BESS complements amicably with that of conventional generators in enhancing the frequency regulation attribute of the grid system.展开更多
基金supported by the Australian Government Department of Industry,Science,Energy,and Resources,and the Department of Climate Change,Energy,the Environment and Water under the International Clean Innovation Researcher Networks(ICIRN)program(grant number:ICIRN000077).
文摘The increasing drive towards eco-friendly environment motivates the generation of energy from renewable energy sources (RESs). The rising share of RESs in power generation poses potential challenges, including uncertainties in generation output, frequency fluctuations, and insufficient voltage regulation capabilities. As a solution to these challenges, energy storage systems (ESSs) play a crucial role in storing and releasing power as needed. Battery energy storage systems (BESSs) provide significant potential to maximize the energy efficiency of a distribution network and the benefits of different stakeholders. This can be achieved through optimizing placement, sizing, charge/discharge scheduling, and control, all of which contribute to enhancing the overall performance of the network. In this paper, we provide a comprehensive overview of BESS operation, optimization, and modeling in different applications, and how mathematical and artificial intelligence (AI)-based optimization techniques contribute to BESS charging and discharging scheduling. We also discuss some potential future opportunities and challenges of the BESS operation, AI in BESSs, and how emerging technologies, such as internet of things, AI, and big data impact the development of BESSs.
基金supported by National Natural Science Foundation of China(No.51107126 and No.512111046)the Key Projects in National Science and Technology Pillar Program(No.2011BAA07B07)+1 种基金the Beiing Nova Program(No.Z141101001814094)the Science and Technology Foundation of State Grid Corporation of China(No.DG71-14-032)
文摘Battery energy storage system(BESS)is one of the effective technologies to deal with power fluctuation and intermittence resulting from grid integration of large renewable generations.In this paper,the system configuration of a China’s national renewable generation demonstration project combining a large-scale BESS with wind farm and photovoltaic(PV)power station,all coupled to a power transmission system,is introduced,and the key technologies including optimal control and management as well as operational status of this BESS are presented.Additionally,the technical benefits of such a large-scale BESS in dealing with power fluctuation and intermittence issues resulting from grid connection of large-scale renewable generation,and for improvement of operation characteristics of transmission grid,are discussed with relevant case studies.
基金This work is supported by National Basic Research Program of China(973 Program)(No.2013CB228201).
文摘Integrating a battery energy storage system(ESS)with a large wind farm can smooth the intermittent power obtained from the wind farm,but the smoothing function will not be achieved if multiple ESSs are used to smooth the fluctuations in individual wind power plants in a distributed pattern.Therefore,this study focuses on the development of a control strategy to optimize the use of multiple ESSs to accelerate the adoption of wind energy resources.This paper proposes a quasi-automated generation control(QAGC)strategy to coordinate multiple ESSs,which responds to the grid dispatch demand rather than smoothing out the intermittent power from individual wind farms.The aims of QAGC are to ensure that multiple ESSs provide a service that is as balanced as possible,so more wind power systems at various scales can be accepted by the grid,as well maximizing the low-carbon benefits of ESSs.The effectiveness of QAGC is demonstrated by using data from an actual gigawatt scale cluster of wind plants.
文摘This paper presents a series of operating schedules for Battery Energy Storage Companies(BESC)to provide peak shaving and spinning reserve services in the electricity markets under increasing wind penetration.As individual market participants,BESC can bid in ancillary services markets in an Independent System Operator(ISO)and contribute towards frequency and voltage support in the grid.Recent development in batteries technologies and availability of the day-ahead spot market prices would make BESC economically feasible.Profit maximization of BESC is achieved by determining the optimum capacity of Energy Storage Systems(ESS)required for meeting spinning reserve requirements as well as peak shaving.Historic spot market prices and frequency deviations from Australia Energy Market Operator(AEMO)are used for numerical simulations and the economic benefits of BESC is considered reflecting various aspects in Australia’s National Electricity Markets(NEM).
文摘Recent advances in battery energy storage technologies enable increasing number of photovoltaic-battery energy storage systems(PV-BESS)to be deployed and connected with current power grids.The reliable and efficient utilization of BESS imposes an obvious technical challenge which needs to be urgently addressed.In this paper,the optimal operation of PV-BESS based power plant is investigated.The operational scenarios are firstly partitioned using a self-organizing map(SOM)clustering based approach.The revenue optimization model is adopted for the PV-BESS power plants to determine the optimal operational modes under typical conditions for a set of considerations,e.g.power generation revenue,assessing rewards/penalties as well as peak shaving/valley filling revenue.The solution is evaluated through a set of case studies,and the numerical result demonstrates the effectiveness of the suggested solution can optimally operate the BESS with the maximal revenue.
文摘Network frequency control function is incorporated into a grid-connected wind farm-dual battery energy storage system(BESS)scheme.The design of the scheme takes advantage of the rapid response characteristics of the BESS and the in-built short-term overloading capability of the associated power conversion devices.A control strategy to regulate the BESS output power is then proposed.It is shown that the frequency control action offered by the BESS complements amicably with that of conventional generators in enhancing the frequency regulation attribute of the grid system.