期刊文献+
共找到7,202篇文章
< 1 2 250 >
每页显示 20 50 100
Role of micro-Ca/In alloying in tailoring the microstructural characteristics and discharge performance of dilute Mg-Bi-Sn-based alloys as anodes for Mg-air batteries
1
作者 Fei-er Shangguan Wei-li Cheng +6 位作者 Yu-hang Chen Ze-qin Cui Hui Yu Hong-xia Wang Li-fei Wang Hang Li Hua Hou 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期251-266,共16页
The influence of micro-Ca/In alloying on the microstructural charac teristics,electrochemical behaviors and discharge properties of extruded dilute Mg-0.5Bi-0.5Sn-based(wt.%)alloys as anodes for Mg-air batteries are e... The influence of micro-Ca/In alloying on the microstructural charac teristics,electrochemical behaviors and discharge properties of extruded dilute Mg-0.5Bi-0.5Sn-based(wt.%)alloys as anodes for Mg-air batteries are evaluated.The grain size and texture intensity of the Mg-Bi-Sn-based alloys are significantly decreased after the Ca/In alloying,particularly for the In-containing alloy.Note that,in addition to nanoscale Mg_(3)Bi_(2)phase,a new microscale Mg_(2)Bi_(2)Ca phase forms in the Ca-containing alloy.The electrochemical test results demonstrate that Ca/In micro-alloying can enhance the electrochemical activity.Using In to alloy the Mg-Bi-Sn-based alloy is effective in restricting the cathodic hydrogen evolution(CHE)kinetics,leading to a low self-corrosion rate,while severe CHE occurred after Ca alloying.The micro-alloying of Ca/In to Mg-Bi-Sn-based alloy strongly deteriorates the compactness of discharge products film and mitigates the"chunk effect"(CE),hence the cell voltage,anodic efficiency as well as discharge capacity are greatly improved.The In-containing alloy exhibits outstanding discharge performance under the combined effect of the modified microstructure and discharge products,thus making it a potential anode material for primary Mg-air battery. 展开更多
关键词 Mg-air batteries Mg-Bi-Sn based alloys Electrochemical behaviors discharge properties
下载PDF
Tailoring the microstructure of Mg-Al-Sn-RE alloy via friction stir processing and the impact on its electrochemical discharge behaviour as the anode for Mg-air battery
2
作者 Jingjing Liu Hao Hu +4 位作者 Tianqi Wu Jinpeng Chen Xusheng Yang Naiguang Wang Zhicong Shi 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1554-1565,共12页
Constructing the magnesium alloy with fine grains,low density of dislocations,and weak crystal orientation is of crucial importance to enhance its comprehensive performance as the anode for Mg-air battery.However,this... Constructing the magnesium alloy with fine grains,low density of dislocations,and weak crystal orientation is of crucial importance to enhance its comprehensive performance as the anode for Mg-air battery.However,this unique microstructure can hardly be achieved with conventional plastic deformation such as rolling or extrusion.Herein,we tailor the microstructure of Mg-Al-Sn-RE alloy by using the friction stir processing,which obviously refines the grains without increasing dislocation density or strengthening crystal orientation.The Mg-air battery with the processed Mg-Al-Sn-RE alloy as the anode exhibits higher discharge voltages and capacities than that employing the untreated anode.Furthermore,the impact of friction stir processing on the electrochemical discharge behaviour of Mg-Al-Sn-RE anode and the corresponding mechanism are also analysed according to microstructure characterization and electrochemical response. 展开更多
关键词 Magnesium anode Electrochemical discharge behaviour Mg-air battery Friction stir processing
下载PDF
Experiment Study on the Ending Criteria of Charge and Discharge of Nickel-Hydride Battery 被引量:4
3
作者 孙逢春 陈勇 +1 位作者 何洪文 张承宁 《Journal of Beijing Institute of Technology》 EI CAS 2002年第1期56-60,共5页
Charge and discharge characteristics of Ni/MH batteries are investigated with experiments. During battery’s working, the voltage, capacity, temperature and internal resistance were recorded, corresponding curves were... Charge and discharge characteristics of Ni/MH batteries are investigated with experiments. During battery’s working, the voltage, capacity, temperature and internal resistance were recorded, corresponding curves were depicted. Variations of the aforementioned four parameters are differently obvious. Ending criteria of charge and discharge of Ni/MH batteries are discussed on the basis of the curves. Voltage, capacity and temperature of a battery can be used as ending criteria during charge. When discharge takes place, voltage, capacity and internal resistance can be chosen as ending criteria. As a whole, capacity is more suitable for being used as ending criteria of charge and discharge than the other three parameters. At last, the capacity of a battery is recommended to be ending criteria of charge and discharge. The conclusions will provide references to different capacity Ni/MH batteries for electric vehicles. 展开更多
关键词 electric vehicles Ni/MH batteries charge and discharge characteristics charge and discharge criteria
下载PDF
Discharge behavior and electrochemical properties of Mg-Al-Sn alloy anode for seawater activated battery 被引量:2
4
作者 余琨 熊汉青 +5 位作者 文利 戴翌龙 杨士海 范素峰 滕飞 乔雪岩 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1234-1240,共7页
Mg-Al-Sn alloy is one of the new developed anode materials for seawater activated batteries. The potentiodynamic polarization, galvanostatic discharge and electrochemical impedance spectroscopy of Mg-6%Al-1%Sn and Mg-... Mg-Al-Sn alloy is one of the new developed anode materials for seawater activated batteries. The potentiodynamic polarization, galvanostatic discharge and electrochemical impedance spectroscopy of Mg-6%Al-1%Sn and Mg-6%Al-5%Sn(mass fraction) alloys in seawater were studied and compared with the commercial AZ31 and AP65 alloys. The results show that the Mg-6%Al-1%Sn alloy obtains the most negative discharge potential of average-1.611V with a electric current density of 100 mA/cm2. EIS studies reveal that the Mg-Al-Sn alloy/seawater interfacial electrochemical process is determined by an activation controlled reaction. The assembled prototype batteries with Mg-6%Al-1%Sn alloy as anodes and Ag Cl as cathodes exhibit a satisfactory integrated discharge properties. 展开更多
关键词 magnesium anode material galvanostatic discharge anodic dissolution seawater activated batteries
下载PDF
Surface charge characteristics in a three-electrode surface dielectric barrier discharge
5
作者 Jingwen FAN Huijie YAN +3 位作者 Ting LI Yurong MAO Jiaqi LI Jian SONGKey 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第11期127-137,共11页
The surface charge characteristics in a three-electrode surface dielectric barrier discharge(SDBD)are experimentally investigated based on the Pockels effect of an electro-optical crystal. The actuator is based on the... The surface charge characteristics in a three-electrode surface dielectric barrier discharge(SDBD)are experimentally investigated based on the Pockels effect of an electro-optical crystal. The actuator is based on the most commonly used SDBD structure for airflow control, with an exposed electrode supplied with sinusoidal AC high voltage, a grounded encapsulated electrode and an additional exposed electrode downstream supplied with DC voltage. The ionic wind velocity and thrust can be significantly improved by increasing DC voltage although the plasma discharge characteristics are virtually unaffected. It is found that the negative charges generated by the discharge of the three-electrode structure accumulate on the dielectric surface significantly further downstream in an AC period compared to the actuator with a two-electrode structure. The negative charges in the downstream region increase as the DC voltage increases.In addition, the DC voltage affects the time required for the positive charge filaments to decay.The positive DC voltage expands the ionic acceleration zone downstream to produce a greater EHD force. The amplitude of the DC voltage affects the electric field on the dielectric surface and is therefore a key factor in the formation of the EHD force. Further research on the surface charge characteristics of a three-electrode structure has been conducted using a pulse power to drive the discharge, and the same conclusions are drawn. This work demonstrates a link between surface charge characteristics and EHD performance of a three-electrode SDBD actuator. 展开更多
关键词 surface dielectric barrier discharge three-electrode structure electro-optical crystal surface charge
下载PDF
Formation mechanism of bright and dark concentric-ring pattern in dielectric barrier discharge
6
作者 李彩霞 冯建宇 +4 位作者 王舒畅 李骋 冉俊霞 潘宇扬 董丽芳 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第8期50-57,共8页
In this work,a bright and dark concentric-ring pattern is reported in a dielectric barrier discharge for the first time.The spatiotemporal dynamics of the bright and dark concentric-ring pattern are investigated with ... In this work,a bright and dark concentric-ring pattern is reported in a dielectric barrier discharge for the first time.The spatiotemporal dynamics of the bright and dark concentric-ring pattern are investigated with an intensified charge-coupled device and photomultiplier tubes.The results indicate that the bright and dark concentric-ring pattern is composed of three concentric-ring sublattices.These are bright concentric-ring structures,dark concentric-ring structures and wider concentric-ring structures,respectively.The bright concentric-ring structures and dark concentricring structures are alternately distributed.The bright concentric-ring structures are located at the centre of the wider concentric-ring structures.The wider concentric-ring structures first form from the outer edge and gradually develop to the centre.The essence of all three concentric-ring structures is the individual discharge filaments.The optical emission spectra of different sublattices are acquired and analysed.It is found that the plasma parameters of the three concentricring sublattices are different.Finally,the formation mechanism of the bright and dark concentricring pattern is discussed. 展开更多
关键词 dielectric barrier discharge(DBD) concentric-ring pattern spatio-temporal dynamics optical emission spectroscopy wall charges
下载PDF
Discharge mode and particle transport in radio frequency capacitively coupled Ar/O_(2) plasma discharges
7
作者 Zhuo-Yao Gao Wan Dong +3 位作者 Chong-Biao Tian Xing-Zhao Jiang Zhong-Ling Dai Yuan-Hong Song 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期451-460,共10页
Simulations are conducted on capacitively coupled Ar/O_(2)mixed gas discharges employing a one-dimensional fluid coupled with an electron Monte Carlo(MC)model.The research explores the impact of different O_(2)ratio a... Simulations are conducted on capacitively coupled Ar/O_(2)mixed gas discharges employing a one-dimensional fluid coupled with an electron Monte Carlo(MC)model.The research explores the impact of different O_(2)ratio and pressures on the discharge characteristics of Ar/O_(2)plasma.At a fixed Ar/O_(2)gas ratio,with the increasing pressure,higher ion densities,as well as a slight increase in electron density in the bulk region can be observed.The discharge remains dominated by the drift-ambipolar(DA)mode,and the flux of O(3P)at the electrode increases with the increasing pressure due to higher background gas density,while the fluxes of O(1D)and Ardecrease due to the pronounced loss rate.With the increasing proportion of O_(2),a change in the dominant discharge mode from a mode to DA mode can be detected,and the O_(2)-associated charged particle densities are significantly increased.However,Ar+density shows a trend of increasing and then decreasing,while for neutral fluxes at the electrode,Arflux decreases,and O(3P)flux increases with the reduced Ar gas proportion,while trends in O(1D)flux show slight differences.The evolution of the densities of the charged particle and the neutral fluxes under different discharge parameters are discussed in detail using the ionization characteristics as well as the transport properties.Hopefully,more comprehensive understanding of Ar/O_(2)discharge characteristics in this work will provide a valuable reference for the industry. 展开更多
关键词 Ar/O_(2) mixed gas discharges electron dynamics transport of charged and neutral particles
下载PDF
A quantum-chemical study on the discharge reaction mechanism of lithium-sulfur batteries 被引量:4
8
作者 Lijiang Wang Tianran Zhang +3 位作者 Siqi Yang Fangyi Cheng Jing Liang Jun Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第1期72-77,共6页
Lithium-sulfur batteries have attracted a great interest in electrochemical energy conversion and storage, but their discharge mechanism remains not well understood up to now. Here, we report density functional theory... Lithium-sulfur batteries have attracted a great interest in electrochemical energy conversion and storage, but their discharge mechanism remains not well understood up to now. Here, we report density functional theory (DFr) calculation study of the discharge mechanism for lithium-sulfur batteries which are based on the structure of $8 and Li2Sx (l_〈x〈_8) clusters. The results show that for LizSz (1 〈x_8) clusters, the most stable geometry is chainlike when x = 1 and 6, while the minimal-energy structure is found to be cyclic when x = 2-5, 7, 8. The stability of LizSx (l_〈x_〈 8) clusters increases with the decreasing x value, indicating a favorable thermodynamic tendency of transition from $8 to Li2S. A three-step reaction route has been proposed during the discharge process, that is, $8---~Li2S4 at about 2.30 V, Li2S4---~Li2S2 at around 2.22 V, and Li2S2 ~ Li2S at 2.18 V. Furthermore, the effect of the electrolyte on the potential platform has been also investigated. The discharge potential is found to increase with the decrease of dielectric constant of the electrolyte. The computational results could provide insights into further understanding the discharge mechanism of lithium-sulfur batteries. 展开更多
关键词 lithium-sulfur battery density functional theory discharge mechanism lithium polysulfide discharge potential
下载PDF
Discharge performance of Mg-Al-Pb-La anode for Mg-air battery 被引量:9
9
作者 Yan FENG Ge LEI +2 位作者 Yu-qing HE Ri-chu WANG Xiao-feng WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第11期2275-2287,共13页
b The discharge performance of Mg-Al-Pb-La anode was investigated by electrochemical techniques and compared withthat of Mg-Al-Pb alloy. The results indicate that the Mg-Al-Pb-La anode provides enhanced corrosion resi... b The discharge performance of Mg-Al-Pb-La anode was investigated by electrochemical techniques and compared withthat of Mg-Al-Pb alloy. The results indicate that the Mg-Al-Pb-La anode provides enhanced corrosion resistance at open circlepotential, and exhibits better discharge activity than the Mg-Al-Pb alloy. The utilization efficiency of Mg-Al-Pb-La anode ishigher than that of commercial Mg-Al-Zn (AZ) and Mg-Al-Mn (AM) alloys. A single Mg-air battery with Mg-Al-Pb-La alloy asthe anode and air as the cathode has an average discharge potential of 1.295 V and a discharge capacity of 1370 mA·h/g duringdischarge at 10 mA/cm2, which is higher than that of batteries using Mg-Li anodes. The enhancement in discharge performance ofthe Mg-Al-Pb-La anode is caused by its modified microstructure, which reduces the self-corrosion and accelerates the spalling ofoxidation products during battery discharge. Furthermore, the dissolution mechanism of Mg-Al-Pb-La anode during the dischargeprocess was analyzed. 展开更多
关键词 Mg-air battery Mg-Al-Pb-La alloy corrosion resistance discharge activity utilization efficiency
下载PDF
Te0.045S0.955PAN composite with high average discharge voltage for Li–S battery 被引量:3
10
作者 Ke Wang Yuepeng Guan +2 位作者 Zhaoqing Jin Weikun Wang Anbang Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第12期249-255,共7页
As a sulfur-containing cathode material,sulfide polyacrylonitrile(SPAN)is expected to be used for longlife lithium-sulfur battery because there is no shuttle effect occurred in its charge process.However,its specific ... As a sulfur-containing cathode material,sulfide polyacrylonitrile(SPAN)is expected to be used for longlife lithium-sulfur battery because there is no shuttle effect occurred in its charge process.However,its specific capacity and discharge potential need to be further improved to satisfy the urgent demands for high-performance batteries.In this paper,Te0.045S0.955PAN composite was synthesized by co-heating TexS1-x and PAN,and the superior electrochemical performance to that of SPAN was obtained because of doping Te with high conductivity.The as-prepared Te0.045S0.955PAN composite possessed the specific capacity of 675 mAh g^-1 after 100 cycles at the current density of 0.1 A g^-1 with high capacity retention of96.6%compared to the second cycle.Especially,during cycling,Te0.045S0.955PAN showed average discharge voltages of 1.88-1.91 V,which were higher than 1.85-1.88 V for SPAN at the same current density.Thus doping Te provides a new strategy for increasing the energy density of SPAN. 展开更多
关键词 Sulfurized polyacrylonitrile TELLURIUM CATHODE Average discharge voltage Lithium-sulfur battery
下载PDF
Discharge properties of Mg-Sn-Y alloys as anodes for Mg-air batteries 被引量:8
11
作者 Hua-bao Yang Liang Wu +7 位作者 Bin Jiang Bin Lei Ming Yuan Hong-mei Xie Andrej Atrens Jiang-feng Song Guang-sheng Huang Fu-sheng Pan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第10期1705-1715,共11页
Mg-Sn-Y alloys with different Sn contents(wt%)were assessed as anode candidates for Mg-air batteries.The relationship between microstructure(including the second phase,grain size,and texture)and discharge properties o... Mg-Sn-Y alloys with different Sn contents(wt%)were assessed as anode candidates for Mg-air batteries.The relationship between microstructure(including the second phase,grain size,and texture)and discharge properties of the Mg-Sn-Y alloys was examined using microstructure observation,electrochemical measurements,and galvanostatic discharge tests.The Mg-0.7Sn-1.4Y alloy had a high steady discharge voltage of 1.5225 V and a high anodic efficiency of 46.6% at 2.5 mA·cm^(-2).These good properties were related to its microstructure:small grain size of 3.8μm,uniform distribution of small second phase particles of 0.6μm,and a high content(vol%)of(1120)/(1010)orientated grains.The scanning Kelvin probe force microscopy(SKPFM)indicated that the Sn_(3)Y_(5) and MgSnY phases were effective cathodes causing micro-galvanic corrosion which promoted the dissolution of Mg matrix during the discharge process. 展开更多
关键词 magnesium-stannum-yttrium alloy microstructure micro-galvanic corrosion discharge properties magnesium-air battery
下载PDF
Effect of yttrium and calcium additions on electrochemical behaviors and discharge performance of AZ80 anodes for Mg-air battery 被引量:4
12
作者 Yu-wen-xi ZHANG Lu HAN +4 位作者 Lin-bao REN Ling-ling FAN Yang-yang GUO Ming-yang ZHOU Gao-feng QUAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第8期2510-2526,共17页
The effects of yttrium(Y)and yttrium+calcium(Y+Ca)additions on the electrochemical properties and discharge performance of the as-extruded Mg−8Al−0.5Zn−0.2Mn(AZ80)anodes for Mg−air batteries were investigated.The resu... The effects of yttrium(Y)and yttrium+calcium(Y+Ca)additions on the electrochemical properties and discharge performance of the as-extruded Mg−8Al−0.5Zn−0.2Mn(AZ80)anodes for Mg−air batteries were investigated.The results show that the addition of 0.2 wt.%Y increased the corrosion resistance and discharge activity of AZ80 anode.This was attributed to the fine and sphericalβ-Mg_17)Al_(12) phases dispersing evenly in AZ80+0.2Y alloy,which suppressed the localized corrosion and severe“chunk effect”,and facilitated the rapid activation ofα-Mg.Combinative addition of 0.2 wt.%Y and 0.15 wt.%Ca generated grain refinement and a reduction of theβ-Mg_17)Al_(12) phase,resulting in a further enhancement in discharge voltage.However,the incorporation of Ca in Mg_17)Al_(12) and Al_(2)Y compounds compromised the corrosion resistance and anodic efficiency of AZ80+0.2Y+0.15Ca anode.Consequently,AZ80+0.2Y anode exhibited excellent overall discharge performance,with the peak discharge capacity and anodic efficiency of 1525 mA·h·g^(−1) and 67%at 80 mA/cm^(2),13%and 14%higher than those of AZ80 anode,respectively. 展开更多
关键词 Mg-air battery Mg-Al-Zn anode discharge performance electrochemical behavior
下载PDF
Discharge properties and electrochemical behaviors of AZ80-La-Gd magnesium anode for Mg-air battery 被引量:4
13
作者 Xingrui Chen Yonghui Jia +4 位作者 Qichi Le Henan Wang Xiong Zhou Fuxiao Yu Andrej Atrens 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期2113-2121,共9页
In this work,the discharge properties and electrochemical behaviors of as-cast AZ80-La-Gd anode for Mg-air battery have been investigated and compared with the AZ80 anode.The microstructure evolution,electrochemical b... In this work,the discharge properties and electrochemical behaviors of as-cast AZ80-La-Gd anode for Mg-air battery have been investigated and compared with the AZ80 anode.The microstructure evolution,electrochemical behaviors and surface morphologies after discharge have been discussed to connect the discharge properties.The results indicate that the modified AZ80-La-Gd is an outstanding candidate for anode for Mg-air batter,which has high cell voltage,stable discharge curves,good specific capacity and energy,and good anodic efficiency.It exhibits the best anodic efficiency,specific capacity and energy of 76.45%,1703.6 mAh·g^(-1)and 2186.3 mWh·g^(-1),respectively,which are20.24%,18.92%and 25.71%higher than values for AZ80 anode.Such excellent discharge performance is attributed to the Al-RE particles.They refine the Mg_(17)Al_(12)phase and therefore improve the self-corrosion resistance and desorption ability of AZ80 anode. 展开更多
关键词 Mg-air batteries Magnesium anode discharge performance Electrochemical behaviors RE compound
下载PDF
The modulation of the discharge plateau of benzoquinone for sodium-ion batteries 被引量:2
14
作者 Feng-hua Chen Yi-wen Wu +7 位作者 Huan-hong Zhang Zhan-tu Long Xiao-xin Lin Ming-zhe Chen Qing Chen Yi-fan Luo Shu-Lei Chou Rong-hua Zeng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第10期1675-1683,共9页
p-Benzoquinone(BQ)is a promising candidate for next-generation sodium-ion batteries(SIBs)because of its high theoretical specific capacity,good reaction reversibility,and high resource availability.However,practical a... p-Benzoquinone(BQ)is a promising candidate for next-generation sodium-ion batteries(SIBs)because of its high theoretical specific capacity,good reaction reversibility,and high resource availability.However,practical application of BQ faces many challenges,such as a low discharge plateau(~2.7 V)as cathode material or a high discharge plateau as anode material compared with inorganic materials for SIBs and high solubility in organic electrolytes,resulting in low power and energy densities.Here,tetrahydroxybenzoquinone tetrasodium salt(Na_(4)C_(6)O_(6))is synthesized through a simple neutralization reaction at low temperatures.The four-ONa electron-donating groups introduced on the structure of BQ greatly lower the discharge plateau by over 1.4 V from ~2.70 V to ~1.26 V,which can change BQ from cathode to anode material for SIBs.At the same time,the addition of four-ONa hydrophilic groups inhibits the dissolution of BQ in the organic electrolyte to a certain extent.As a result,Na_(4)C_(6)O_(6) as the anode displays a moderate discharge capacity and cycling performance at an average work voltage of ~1.26 V versus Na/Na^(+).When evaluated as a Na-ion full cell(NIFC),a Na_(3)V_(2)(PO_(4))_(3)||Na_(4)C_(6)O_(6) NIFC reveals a moderate discharge capacity and an average discharge plateau of ~1.4 V.This research offers a new molecular structure design strategy for reducing the discharge plateau and simultaneously restraining the dissolution of organic electrode materials. 展开更多
关键词 discharge plateau electron-donating groups DISSOLUTION sodium-ion batteries
下载PDF
High power nano-LiMn_2O_4 cathode materials with high-rate pulse discharge capability for lithium-ion batteries 被引量:1
15
作者 陈颖超 谢凯 +2 位作者 盘毅 郑春满 王华林 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第2期532-537,共6页
Nano-LiMn2O4 cathode materials with nano-sized particles are synthesized via a citric acid assisted sol-gel route. The structure, the morphology and the electrochemical properties of the nano-LiMn204 are investigated.... Nano-LiMn2O4 cathode materials with nano-sized particles are synthesized via a citric acid assisted sol-gel route. The structure, the morphology and the electrochemical properties of the nano-LiMn204 are investigated. Compared with the micro-sized LiMn2O4, the nano-LiMn2O4 possesses a high initial capacity (120 mAh/g) at a discharge rate of 0.2 C (29.6 mA/g). The nano-LiMn2O4 also has a good high-rate discharge capability, retaining 91% of its capacity at a discharge rate of 10 C and 73~ at a discharge rate of 40 C. In particular, the nano-LiMn2O4 shows an excellent high-rate pulse discharge capability. The cut-off voltage at the end of 50-ms pulse discharge with a discharge rate of 80 C is above 3.40 V, and the voltage returns to over 4.10 V after the pulse discharge. These results show that the prepared nano-LiMn2O4 could be a potential cathode material for the power sources with the capability to deliver very high-rate pulse currents. 展开更多
关键词 lithium-ion batteries lithium manganese oxide high-rate pulse discharge
下载PDF
Decomposition pathway and stabilization of ether-based electrolytes in the discharge process of Li-O_(2) battery 被引量:1
16
作者 Xiao Liu Xiaosheng Song +5 位作者 Qi Zhang Xuebing Zhu Qing Han Zewen Liu Peng Zhang Yong Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期516-523,I0014,共9页
Ether-based electrolytes with relatively high stability are widely used in Li-O_(2) batteries (LOBs) with high energy density.However,they are still prone to be attacked by reactive oxygen species.Understanding the de... Ether-based electrolytes with relatively high stability are widely used in Li-O_(2) batteries (LOBs) with high energy density.However,they are still prone to be attacked by reactive oxygen species.Understanding the degradation chemistry of ether-based solvent induced by reactive oxygen species is significant importance toward selection of stable electrolytes for LOBs.Herein,we demonstrate that a great amount of H_(2) gas evolves on the Li anode during the long-term discharge process of LOBs,which is due to the electrolyte decomposition at the oxygen cathode.By coupling with in-situ and ex-situ characterization techniques,it is demonstrated that O_(2)^(-) induces the H-abstraction of tetraethylene glycol dimethyl ether(TEGDME) to produce a large amount of H_(2)O at cathode,and this H_(2)O migrates to Li anode and produce H_(2) gas.Based on the established experiments and spectra,a possible decomposition pathway of TEGDME caused by O_(2)^(-)at the discharge process is proposed.And moreover,three types of strategies are discussed to inhibit the decomposition of ether-based electrolytes,which should be highly important for the fundamental and technical advancement for LOBs. 展开更多
关键词 Lithium-oxygen batteries Ether-based electrolytes discharge process Decomposition pathway H_(2)O molecule Hydrogen evolution
下载PDF
A superhigh discharge capacity induced by a synergetic effect between high-surface-area carbons and a carbon paper current collector in a lithium–oxygen battery
17
作者 罗广生 黄诗婷 +2 位作者 赵宁 崔忠慧 郭向欣 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第8期570-576,共7页
This paper invesitages the synergetic effect between high-surface-area carbons, such as Ketjan Black(KB) or Super P(SP) carbon materials, and low-surface-area carbon paper(CP) current collectors and it also examines t... This paper invesitages the synergetic effect between high-surface-area carbons, such as Ketjan Black(KB) or Super P(SP) carbon materials, and low-surface-area carbon paper(CP) current collectors and it also examines their influence on the discharge performance of nonaqueous Li–O2cells. Ultra-large specific discharge capacities are found in the KB/CP cathodes, which are much greater than those observed in the individual KB or CP cathodes. Detailed analysis indicates that such unexpectedly large capacities result from the synergetic effect between the two components. During the initial discharges of KB or SP materials, a large number of superoxide radical(O·-2) species in the electrolytes and Li2O2 nuclei at the CP surfaces are formed, which activate the CP current collectors to contribute considerable capacities. These results imply that CP could be a superior material for current collectors in terms of its contribution to the overall discharge capacity.On the other hand, we should be careful to calculate the specific capacities of the oxygen cathodes when using CP as a current collector; i.e., ignoring the contribution from the CP may cause overstated discharge capacities. 展开更多
关键词 lithium–oxygen batteries high discharge capacity carbon paper current collectors large-surface carbon-based cathodes synergetic
下载PDF
Simple Rational Model for Discharge of Batteries with Aqueous Electrolytes, Based on Nernst Equation
18
作者 Panagis G. Papadopoulos Christopher G. Koutitas +2 位作者 Christos G. Karayannis Panos D. Kiousis Yannis N. Dimitropoulos 《Open Journal of Physical Chemistry》 2021年第1期1-11,共11页
A simple rational model is proposed for discharge of batteries with aqueous electrolytes, based on Nernst equation. Details of electrode kinetics are not taken into account. Only a few overall parameters of the batter... A simple rational model is proposed for discharge of batteries with aqueous electrolytes, based on Nernst equation. Details of electrode kinetics are not taken into account. Only a few overall parameters of the battery are considered. A simple algorithm, with variable time step-length <span style="font-family:Verdana;">Δ</span><i><span style="font-family:Verdana;">t</span></i><span style="font-family:Verdana;">, is presented, for proposed model. The model is first applied to Daniel cell, in order to clar</span><span style="font-family:Verdana;">ify</span><span style="font-family:""><span style="font-family:Verdana;"> concepts and principles of battery operation. It is found that initial pinching, in time-history curve of voltage </span><i><span style="font-family:Verdana;">E-t</span></i><span style="font-family:Verdana;">, is due to initial under-concentration of product ion. Then, model is applied </span></span><span style="font-family:Verdana;">to</span><span> a lead-acid battery. In absence of an ion product, and in order to construct nominator of Nernst ratio, such an ion, with coefficient tending to zero, is assumed, thus yielding unity in nominator. Time-history curves of voltage, for various values of internal resistance, are compared with corresponding published experimental curves. Temperature effect on voltage-time curve is examined. Proposed model can be extended to other types of batteries, which can be considered as having aqueous electrolytes, too.</span> 展开更多
关键词 battery Aqueous Electrolyte discharge Nernst Equation Daniel Cell Lead-Acid battery Temperature Effect
下载PDF
Self-Discharge in Valve-Regulated Sealed Lead-Acid Batteries
19
作者 董保光 张秋道 陈振宁 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1996年第4期21-25,共5页
Factors that cause the self-discharge in valve-regulated sealed lead-acid batteries are discussed and measures to inhibit the self-discharge are put forward.
关键词 ss: SELF-discharge VALVE-REGULATED LEAD-ACID battery
下载PDF
Ideal Bi‑Based Hybrid Anode Material for Ultrafast Charging of Sodium‑Ion Batteries at Extremely Low Temperatures
20
作者 Jie Bai Jian Hui Jia +2 位作者 Yu Wang Chun Cheng Yang Qing Jiang 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期152-167,共16页
Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability o... Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability of ultrafast charging at ultralow temperature for SIBs is rarely reported.Herein,a hybrid of Bi nanoparticles embedded in carbon nanorods is demonstrated as an ideal material to address this issue,which is synthesized via a high temperature shock method.Such a hybrid shows an unprecedented rate performance(237.9 mAh g^(−1) at 2 A g^(−1))at−60℃,outperforming all reported SIB anode materials.Coupled with a Na_(3)V_(2)(PO_(4))_(3)cathode,the energy density of the full cell can reach to 181.9 Wh kg^(−1) at−40°C.Based on this work,a novel strategy of high-rate activation is proposed to enhance performances of Bi-based materials in cryogenic conditions by creating new active sites for interfacial reaction under large current. 展开更多
关键词 Bi nanoparticles High temperature shock High-rate activation Ultrafast charging Low-temperature sodium-ion batteries
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部