Conducting polyaniline (PANI) powder was well mixed with graphite and acetylene black to obtain the optimum conductivity and porosity. The mixed powder was compressed into a pellet for cathode. Zinc powder was mixed w...Conducting polyaniline (PANI) powder was well mixed with graphite and acetylene black to obtain the optimum conductivity and porosity. The mixed powder was compressed into a pellet for cathode. Zinc powder was mixed with some metal powder, and compressed into a pellet used as the anode. The electrolyte comprised ZnCl2, NH4Cl, Triton-X100 and PVA at pH 3. The battery has an open-circuit voltage of 1.44 V. The battery underwent charge-discharge cycle with a constant current density of 3 mA·cm-2, within the voltage range of 0.40-1.68 V. It is found that the capacity of the battery is related to the charge-discharge cycles, the maximum capacity is 67.9 mAh·g-1, and Coulombic efficiency is between 95% and 100%. The battery stability was also investigated after 78 d of standing without use. It is found that the battery experiences a self-discharge of less than 0.29% per day.展开更多
不间断电源(UPS,Uninterrupted power supply),由电力变流器、储能装置(如蓄电池)和开关(电子式、机械式或混合式)等组合而成,在供电中断后能持续一定供电时间的电源设备[1]。随着技术的发展,UPS不间断电源应用范围逐渐扩大,特别在电信...不间断电源(UPS,Uninterrupted power supply),由电力变流器、储能装置(如蓄电池)和开关(电子式、机械式或混合式)等组合而成,在供电中断后能持续一定供电时间的电源设备[1]。随着技术的发展,UPS不间断电源应用范围逐渐扩大,特别在电信、石油、化工等领域得到了广泛的应用。石油化工企业生产装置电力设计技术规范规定一级负荷中当生产装置工作电源突然中断时,为确保安全停车,避免引起爆炸、火灾、中毒、人员伤亡、关键设备损坏,或事故一旦发生能及时处理,防止事故扩大,保证关键设备,抢救及撤离工作人员,而必须保证用电的负荷,应视为一级负荷中特别重要负荷,特别重要负荷必须设置UPS电源[2]。一般情况下,化工装置一级负荷都基本配备UPS电源,通过我司多年来对UPS电源应用过程中的经验,探讨化工仪表UPS电源的配置、管理、维护等要点问题,优化UPS配置,不断改善管理及维护能力。展开更多
With the increasing demand for clean renewable energy and electric cars,people have put forward higher requirement for the energy storage system.One of the most successful lithium-ion batteries with a cathode combinat...With the increasing demand for clean renewable energy and electric cars,people have put forward higher requirement for the energy storage system.One of the most successful lithium-ion batteries with a cathode combination of lithium nickel manganese cobalt oxide(also called NCM lithium-ion battery),has been playing an increasingly important role.So far,numerous research has been done on the fabrication of cathode material with optimization of its composition,design,and assembly of the battery system in order to improve the energy storage performance.However,most of the previous studies were conducted based on relatively short cycling time of testing,with limited charge-discharge cycles of no more than 1000.Thus the conclusions were insufficient to be applied in the practical working condition.In this work,by using the developed NCM523 lithium-ion batteries,we have performed a series of ultra-long cycling tests on the individual cell and its module,with a comprehensive study on the relationship between the retained capacity after long cycling time and the depth of discharge(DOD),charge-discharge rate and operating temperature.Optimization of the charge-discharge strategies on a single cell and the whole module was also made to effectively improve the overall energy storage efficiency.This experimental study offers a guideline for the efficient use of similar types of lithium-ion batteries in the practical working condition.The developed batteries together with the optimized charge-discharge strategy proposed here are promising to meet the requirements for applications of stationary energy storage and electric cars.展开更多
锂离子电池技术作为新能源储存领域重要的电池技术,具有广阔的发展前景.近年来,电极材料的开发和制备工艺的优化成为了锂离子电池技术的研究重点.双束电子显微镜又称聚焦离子束–扫描电子显微镜(focused ion beam-scanning electron mic...锂离子电池技术作为新能源储存领域重要的电池技术,具有广阔的发展前景.近年来,电极材料的开发和制备工艺的优化成为了锂离子电池技术的研究重点.双束电子显微镜又称聚焦离子束–扫描电子显微镜(focused ion beam-scanning electron microscope,FIB-SEM),是一种兼具微纳加工和显微成像功能的显微分析仪器,具有精确定点加工、高分辨扫描成像、适用多种类样品等优点,可为锂离子电池材料表征提供重要的技术支撑.对锂离子电池材料研究中FIB-SEM的应用场景进行了总结,归纳了FIB-SEM和其他仪器联用可实现的拓展功能.最后,对FIB-SEM在锂离子电池材料研究中的潜在应用进行了展望.展开更多
为实现电池SOC(State of Charge)的精确估计与提高电池模型的精确性,采用等效电路模型PNGV电池试验手册中的标准电池模型,基于辅助变量法和最小二乘法相融合的方法提出了混合动力镍氢动力电池在线参数辨识方法,并利用MATLB/SIMULINK建...为实现电池SOC(State of Charge)的精确估计与提高电池模型的精确性,采用等效电路模型PNGV电池试验手册中的标准电池模型,基于辅助变量法和最小二乘法相融合的方法提出了混合动力镍氢动力电池在线参数辨识方法,并利用MATLB/SIMULINK建立电池模型.仿真分析结果显示,所建立的电池模型电压最大误差为4.2 V,平均误差为0.57V,SOC的估计最大误差为0.048,平均误差为0.011,能很好地拟合真实数据.展开更多
基金This work was financially supported by the National Natural Science Foundation of China (No.10374053)
文摘Conducting polyaniline (PANI) powder was well mixed with graphite and acetylene black to obtain the optimum conductivity and porosity. The mixed powder was compressed into a pellet for cathode. Zinc powder was mixed with some metal powder, and compressed into a pellet used as the anode. The electrolyte comprised ZnCl2, NH4Cl, Triton-X100 and PVA at pH 3. The battery has an open-circuit voltage of 1.44 V. The battery underwent charge-discharge cycle with a constant current density of 3 mA·cm-2, within the voltage range of 0.40-1.68 V. It is found that the capacity of the battery is related to the charge-discharge cycles, the maximum capacity is 67.9 mAh·g-1, and Coulombic efficiency is between 95% and 100%. The battery stability was also investigated after 78 d of standing without use. It is found that the battery experiences a self-discharge of less than 0.29% per day.
文摘不间断电源(UPS,Uninterrupted power supply),由电力变流器、储能装置(如蓄电池)和开关(电子式、机械式或混合式)等组合而成,在供电中断后能持续一定供电时间的电源设备[1]。随着技术的发展,UPS不间断电源应用范围逐渐扩大,特别在电信、石油、化工等领域得到了广泛的应用。石油化工企业生产装置电力设计技术规范规定一级负荷中当生产装置工作电源突然中断时,为确保安全停车,避免引起爆炸、火灾、中毒、人员伤亡、关键设备损坏,或事故一旦发生能及时处理,防止事故扩大,保证关键设备,抢救及撤离工作人员,而必须保证用电的负荷,应视为一级负荷中特别重要负荷,特别重要负荷必须设置UPS电源[2]。一般情况下,化工装置一级负荷都基本配备UPS电源,通过我司多年来对UPS电源应用过程中的经验,探讨化工仪表UPS电源的配置、管理、维护等要点问题,优化UPS配置,不断改善管理及维护能力。
基金This work was financially supported by the National K ey Basic Research Program of China(2014CB249200).
文摘With the increasing demand for clean renewable energy and electric cars,people have put forward higher requirement for the energy storage system.One of the most successful lithium-ion batteries with a cathode combination of lithium nickel manganese cobalt oxide(also called NCM lithium-ion battery),has been playing an increasingly important role.So far,numerous research has been done on the fabrication of cathode material with optimization of its composition,design,and assembly of the battery system in order to improve the energy storage performance.However,most of the previous studies were conducted based on relatively short cycling time of testing,with limited charge-discharge cycles of no more than 1000.Thus the conclusions were insufficient to be applied in the practical working condition.In this work,by using the developed NCM523 lithium-ion batteries,we have performed a series of ultra-long cycling tests on the individual cell and its module,with a comprehensive study on the relationship between the retained capacity after long cycling time and the depth of discharge(DOD),charge-discharge rate and operating temperature.Optimization of the charge-discharge strategies on a single cell and the whole module was also made to effectively improve the overall energy storage efficiency.This experimental study offers a guideline for the efficient use of similar types of lithium-ion batteries in the practical working condition.The developed batteries together with the optimized charge-discharge strategy proposed here are promising to meet the requirements for applications of stationary energy storage and electric cars.
文摘锂离子电池技术作为新能源储存领域重要的电池技术,具有广阔的发展前景.近年来,电极材料的开发和制备工艺的优化成为了锂离子电池技术的研究重点.双束电子显微镜又称聚焦离子束–扫描电子显微镜(focused ion beam-scanning electron microscope,FIB-SEM),是一种兼具微纳加工和显微成像功能的显微分析仪器,具有精确定点加工、高分辨扫描成像、适用多种类样品等优点,可为锂离子电池材料表征提供重要的技术支撑.对锂离子电池材料研究中FIB-SEM的应用场景进行了总结,归纳了FIB-SEM和其他仪器联用可实现的拓展功能.最后,对FIB-SEM在锂离子电池材料研究中的潜在应用进行了展望.
文摘为实现电池SOC(State of Charge)的精确估计与提高电池模型的精确性,采用等效电路模型PNGV电池试验手册中的标准电池模型,基于辅助变量法和最小二乘法相融合的方法提出了混合动力镍氢动力电池在线参数辨识方法,并利用MATLB/SIMULINK建立电池模型.仿真分析结果显示,所建立的电池模型电压最大误差为4.2 V,平均误差为0.57V,SOC的估计最大误差为0.048,平均误差为0.011,能很好地拟合真实数据.