期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Recent Progress and Future Trends on the State of Charge Estimation Methods to Improve Battery-storage Efficiency: A Review 被引量:5
1
作者 Md Ohirul Qays Yonis Buswig +1 位作者 Md Liton Hossain Ahmed Abu-Siada 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2022年第1期105-114,共10页
Battery storage systems are subject to frequent charging/discharging cycles,which reduce the operational life of the battery and reduce system reliability in the long run.As such,several Battery Management Systems(BMS... Battery storage systems are subject to frequent charging/discharging cycles,which reduce the operational life of the battery and reduce system reliability in the long run.As such,several Battery Management Systems(BMS)have been developed to maintain system reliability and extend the battery’s operative life.Accurate estimation of the battery’s State of Charge(SOC)is a key challenge in the BMS due to its non-linear characteristics.This paper presents a comprehensive review on the most recent classifications and mathematical models for SOC estimation.Future trends for SOC estimation methods are also presented. 展开更多
关键词 battery Management System(BMS) battery modeling battery storage efficiency state of charge(SOC)
原文传递
Energy Management Strategy for Hybrid Electric Vehicle Based on System Efficiency and Battery Life Optimization
2
作者 YANG Yang SU Ling +2 位作者 QIN Datong GONG Hui ZENG Jianfeng 《Wuhan University Journal of Natural Sciences》 CAS 2014年第3期269-276,共8页
A novel method to calculate fuel-electric conversion factor for full hybrid electric vehicle(HEV)equipped with continuously variable transmission(CVT)is proposed.Based on consideration of the efficiency of pivotal... A novel method to calculate fuel-electric conversion factor for full hybrid electric vehicle(HEV)equipped with continuously variable transmission(CVT)is proposed.Based on consideration of the efficiency of pivotal components,electric motor,system efficiency optimization models are developed.According to the target of instantaneous optimization of system efficiency,operating ranges of each mode of power-train are determined,and the corresponding energy management strategies are established.The simulation results demonstrate that the energy management strategy proposed can substantially improve the vehicle fuel economy,and keep battery state of charge(SOC)change in a reasonable variation range. 展开更多
关键词 hybrid electric vehicle energy management strategy efficiency optimization battery state of charge fuel-electric conversion factor
原文传递
Metal/nanocarbon layer current collectors enhanced energy efficiency in lithium-sulfur batteries 被引量:9
3
作者 Jia-Qi Huang Pei-Yan Zhai +2 位作者 Hong-Jie Peng Wan-Cheng Zhu Qiang Zhang 《Science Bulletin》 SCIE EI CAS CSCD 2017年第18期1267-1274,共8页
Lithium-sulfur (Li-S) batteries with intrinsic merits in high theoretical energy density are the most promising candidate as the next-generation power sources. The strategy to achieve a high utilization of active ma... Lithium-sulfur (Li-S) batteries with intrinsic merits in high theoretical energy density are the most promising candidate as the next-generation power sources. The strategy to achieve a high utilization of active materials with high energy efficiency is strongly requested for practical applications with less energy loss during repeated cycling. In this contribution, a metal/nanocarbon layer current collector is proposed to enhance the redox reactions of polysulfides in a working Li-S cell. Such a concept is demon- strated by coating graphene-carbon nanotube hybrids (GNHs) on routine aluminum (AI) foil current collectors. The interracial conductivity and adhesion between the current collector and active material are significantly enhanced. Such novel cell configuration with metal/nanocarbon layer current collectors affords abundant Li ions for rapid redox reactions with small overpotential. Consequently, the Li-S cells with nanostructured current collectors exhibit an initial discharge capacity of 1,113 mAh g-1 at 0.5 C, which is -300 mAh g-1 higher than those without a GNH coating layer. The capacity retention is 73% for cells with GNH after 300 cycles. A reduced voltage hysteresis and a high energy efficiency of ca. 90% are therefore achieved. Moreover, the AI/GNH layer current collectors are easily implanted into current cell assembly process for energy storage devices based on complex multi-electron redox reactions (e.g., Li-S batteries, Li-O2 batteries, fuel cells, and flow batteries). 展开更多
关键词 Lithium-sulfur battery Nanostructured current collectors Polysulfides Energy efficiency Pouch cell
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部