期刊文献+
共找到16,908篇文章
< 1 2 250 >
每页显示 20 50 100
Alternating current heating techniques for lithium-ion batteries in electric vehicles:Recent advances and perspectives
1
作者 Xinrong Huang Jinhao Meng +5 位作者 Wei Jiang Wenjie Liu Kailong Liu Yipu Zhang Daniel-Ioan Stroe Remus Teodorescu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期679-697,共19页
The significant decrease in battery performance at low temperatures is one of the critical challenges that electric vehicles(EVs)face,thereby affecting the penetration rate in cold regions.Alternating current(AC)heati... The significant decrease in battery performance at low temperatures is one of the critical challenges that electric vehicles(EVs)face,thereby affecting the penetration rate in cold regions.Alternating current(AC)heating has attracted widespread attention due to its low energy consumption and uniform heating advantages.This paper introduces the recent advances in AC heating from the perspective of practical EV applications.First,the performance degradation of EVs in low-temperature environments is introduced briefly.The concept of AC heating and its research methods are provided.Then,the effects of various AC heating methods on battery heating performance are reviewed.Based on existing studies,the main factors that affect AC heating performance are analyzed.Moreover,various heating circuits based on EVs are categorized,and their cost,size,complexity,efficiency,reliability,and heating rate are elaborated and compared.The evolution of AC heaters is presented,and the heaters used in brand vehicles are sorted out.Finally,the perspectives and challenges of AC heating are discussed.This paper can guide the selection of heater implementation methods and the optimization of heating effects for future EV applications. 展开更多
关键词 Lithium-ion battery Low temperature Alternating current heating HEATER electric vehicle
下载PDF
Integrated Active Suspension and Anti-Lock Braking Control for Four-Wheel-Independent-Drive Electric Vehicles
2
作者 Ze Zhao Lei Zhang +3 位作者 Xiaoling Ding Zhiqiang Zhang Shaohua Li Liang Gu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期87-98,共12页
This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and ... This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and anti-lock braking system(ABS).First,a longitudinal-vertical coupled vehicle dynamics model is established by integrating a road input model.Then the coupling mechanisms between longitudinal and vertical vehicle dynamics are analyzed.An ASS-ABS integrated control system is proposed,utilizing an H∞controller for ASS to optimize load transfer effect and a neural network sliding mode control for ABS implementation.Finally,the effectiveness of the proposed control scheme is evaluated through comprehensive tests conducted on a hardware-in-loop(HIL)test platform.The HIL test results demonstrate that the proposed control scheme can significantly improve the braking performance and ride comfort compared to conventional ABS control methods. 展开更多
关键词 Four-wheel-independent-drive electric vehicles Active suspension system(ASS) Anti-lock braking system(ABS) Vertical-longitudinal vehicle dynamics
下载PDF
The Future Trend of E-Mobility in Terms of Battery Electric Vehicles and Their Impact on Climate Change: A Case Study Applied in Hungary
3
作者 Mohamad Ali Saleh Saleh 《American Journal of Climate Change》 2024年第2期83-102,共20页
The transportation sector is responsible for 25% of the total Carbon dioxide (CO2) emissions, whereas 60.6% of this sector represents small and medium passenger cars. However, as noted by the European Union Long-term ... The transportation sector is responsible for 25% of the total Carbon dioxide (CO2) emissions, whereas 60.6% of this sector represents small and medium passenger cars. However, as noted by the European Union Long-term strategy, there are two ways to reduce the amount of CO2 emissions in the transportation sector. The first way is characterized by creating more efficient vehicles. In contrast, the second way is characterized by changing the fuel used. The current study addressed the second way, changing the fuel type. The study examined the potential of battery electric vehicles (BEVs) as an alternative fuel type to reduce CO2 emissions in Hungarys transportation sector. The study used secondary data retrieved from Statista and stata.com to analyze the future trends of BEVs in Hungary. The results showed that the percentage of BEVs in Hungary in 2022 was 0.4% compared to the total number of registered passenger cars, which is 3.8 million. The simple exponential smoothing (SES) time series forecast revealed that the number of BEVs is expected to reach 84,192 in 2030, indicating a percentage increase of 2.21% in the next eight years. The study suggests that increasing the number of BEVs is necessary to address the negative impact of CO2 emissions on society. The Hungarian Ministry of Innovation and Technologys strategy to reduce the cost of BEVs may increase the percentage of BEVs by 10%, resulting in a potential average reduction of 76,957,600 g/km of CO2 compared to gasoline, diesel, hybrid electric vehicles (HEVs), and plug-in hybrid vehicles (PHEVs). 展开更多
关键词 Battery electric vehicles (BEVS) GASOLINE DIESEL Hybrid electric vehicles (HEVs) Plug-In Hybrid vehicles (PHEVs) Climate Change Carbon Dioxide (CO2) Emissions
下载PDF
Coordinated Voltage Control of Distribution Network ConsideringMultiple Types of Electric Vehicles
4
作者 Liang Liu Guangda Xu +3 位作者 Yuan Zhao Yi Lu Yu Li Jing Gao 《Energy Engineering》 EI 2024年第2期377-404,共28页
The couple between the power network and the transportation network(TN)is deepening gradually with the increasing penetration rate of electric vehicles(EV),which also poses a great challenge to the traditional voltage... The couple between the power network and the transportation network(TN)is deepening gradually with the increasing penetration rate of electric vehicles(EV),which also poses a great challenge to the traditional voltage control scheme.In this paper,we propose a coordinated voltage control strategy for the active distribution networks considering multiple types of EV.In the first stage,the action of on-load tap changer and capacitor banks,etc.,are determined by optimal power flow calculation,and the node electricity price is also determined based on dynamic time-of-use tariff mechanism.In the second stage,multiple operating scenarios of multiple types of EVs such as cabs,private cars and buses are considered,and the scheduling results of each EV are solved by building an optimization model based on constraints such as queuing theory,Floyd-Warshall algorithm and traffic flow information.In the third stage,the output power of photovoltaic and energy storage systems is fine-tuned in the normal control mode.The charging power of EVs is also regulated in the emergency control mode to reduce the voltage deviation,and the amount of regulation is calculated based on the fair voltage control mode of EVs.Finally,we test the modified IEEE 33-bus distribution system coupled with the 24-bus Beijing TN.The simulation results show that the proposed scheme can mitigate voltage violations well. 展开更多
关键词 electric vehicle transportation network voltage control queuing theory
下载PDF
Analysis for Effects of Temperature Rise of PV Modules upon Driving Distance of Vehicle Integrated Photovoltaic Electric Vehicles
5
作者 Masafumi Yamaguchi Yasuyuki Ota +18 位作者 Taizo Masuda Christian Thiel Anastasios Tsakalidis Arnulf Jaeger-Waldau Kenji Araki Kensuke Nishioka Tatsuya Takamoto Takashi Nakado Kazumi Yamada Tsutomu Tanimoto Yosuke Tomita Yusuke Zushi Kenichi Okumura Takashi Mabuchi Akinori Satou Kyotaro Nakamura Ryo Ozaki Nobuaki Kojima Yoshio Ohshita 《Energy and Power Engineering》 2024年第4期131-150,共20页
The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although ... The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV. 展开更多
关键词 vehicle Integrated Photovoltaics (VIPV) VIPV-Powered electric vehicles Driving Distance PV Modules Solar Irradiation Temperature Rise Radiative Cooling
下载PDF
Enhanced Deep Reinforcement Learning Strategy for Energy Management in Plug-in Hybrid Electric Vehicles with Entropy Regularization and Prioritized Experience Replay
6
作者 Li Wang Xiaoyong Wang 《Energy Engineering》 EI 2024年第12期3953-3979,共27页
Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different ... Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different energy sources is a critical component of PHEV control technology,directly impacting overall vehicle performance.This study proposes an improved deep reinforcement learning(DRL)-based EMSthat optimizes realtime energy allocation and coordinates the operation of multiple power sources.Conventional DRL algorithms struggle to effectively explore all possible state-action combinations within high-dimensional state and action spaces.They often fail to strike an optimal balance between exploration and exploitation,and their assumption of a static environment limits their ability to adapt to changing conditions.Moreover,these algorithms suffer from low sample efficiency.Collectively,these factors contribute to convergence difficulties,low learning efficiency,and instability.To address these challenges,the Deep Deterministic Policy Gradient(DDPG)algorithm is enhanced using entropy regularization and a summation tree-based Prioritized Experience Replay(PER)method,aiming to improve exploration performance and learning efficiency from experience samples.Additionally,the correspondingMarkovDecision Process(MDP)is established.Finally,an EMSbased on the improvedDRLmodel is presented.Comparative simulation experiments are conducted against rule-based,optimization-based,andDRL-based EMSs.The proposed strategy exhibitsminimal deviation fromthe optimal solution obtained by the dynamic programming(DP)strategy that requires global information.In the typical driving scenarios based onWorld Light Vehicle Test Cycle(WLTC)and New European Driving Cycle(NEDC),the proposed method achieved a fuel consumption of 2698.65 g and an Equivalent Fuel Consumption(EFC)of 2696.77 g.Compared to the DP strategy baseline,the proposed method improved the fuel efficiency variances(FEV)by 18.13%,15.1%,and 8.37%over the Deep QNetwork(DQN),Double DRL(DDRL),and original DDPG methods,respectively.The observational outcomes demonstrate that the proposed EMS based on improved DRL framework possesses good real-time performance,stability,and reliability,effectively optimizing vehicle economy and fuel consumption. 展开更多
关键词 Plug-in hybrid electric vehicles deep reinforcement learning energy management strategy deep deterministic policy gradient entropy regularization prioritized experience replay
下载PDF
Drive Train Cooling Options for Electric Vehicles
7
作者 Randeep Singh Tomoki Oridate Tien Nguyen 《Frontiers in Heat and Mass Transfer》 EI 2024年第3期703-717,共15页
Electrification of vehicles intensifies their cooling demands due to the requirements of maintaining electronics/electrical systems below their maximum temperature threshold.In this paper,passive cooling approaches ba... Electrification of vehicles intensifies their cooling demands due to the requirements of maintaining electronics/electrical systems below their maximum temperature threshold.In this paper,passive cooling approaches based on heat pipes have been considered for the thermal management of electric vehicle(EV)traction systems including battery,inverter,and motor.For the battery,a heat pipe base plate is used to provide high heat removal(180 W per module)and better thermal uniformity(<5°C)for the battery modules in a pack while downsizing the liquid cold plate system.In the case of Inverter,two phase cooling system based on heat pipes was designed to handle hot spots arising from high heat flux(∼100 W/cm2)–for liquid cooling and provide location independence and a dedicated cooling approach-for air cooling.For EV motors,heat pipebased systems are explored for stator and rotor cooling.The paper also provides a glimpse of development on high-performance microchannel-based cold plate technologies based on parallel fins and multi-layer 3D stacked structures.Specifically,this work extends the concept of hybridization of two-phase technology based on heat pipes with single-phase technology,predominately based on liquid cooling,to extend performance,functionalities,and operational regime of cooling solutions for components of EV drive trains.In summary,heat pipes will help to improve and extend the overall reliability,performance,and safety of air and liquid cooling systems in electric vehicles. 展开更多
关键词 Li-ion battery INVERTER motor electric vehicle heat pipe two-phase cooling high performance cold plate
下载PDF
Stochastic sampled-data multi-objective control of active suspension systems for in-wheel motor driven electric vehicles
8
作者 Iftikhar Ahmad Xiaohua Ge Qing-Long Han 《Journal of Automation and Intelligence》 2024年第1期2-18,共17页
This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus... This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles. 展开更多
关键词 Active suspension system electric vehicles In-wheel motor Stochastic sampling Dynamic dampers Sampled-data control Multi-objective control
下载PDF
Charging load prediction method for expressway electric vehicles considering dynamic battery state-of-charge and user decision
9
作者 Jiuding Tan Shuaibing Li +4 位作者 Yi Cui Zhixiang Lin Yufeng Song Yongqiang Kang Haiying Dong 《iEnergy》 2024年第2期115-124,共10页
Accurate prediction of electric vehicle(EV)charging loads is a foundational step in the establishment of expressway charging infrastructures.This study introduces an approach to enhance the precision of expressway EV ... Accurate prediction of electric vehicle(EV)charging loads is a foundational step in the establishment of expressway charging infrastructures.This study introduces an approach to enhance the precision of expressway EV charging load predictions.The method considers both the battery dynamic state-of-charge(SOC)and user charging decisions.Expressway network nodes were first extracted using the open Gaode Map API to establish a model that incorporates the expressway network and traffic flow fea-tures.A Gaussian mixture model is then employed to construct a SOC distribution model for mixed traffic flow.An innovative SOC dynamic translation model is then introduced to capture the dynamic characteristics of traffic flow SOC values.Based on this foun-dation,an EV charging decision model was developed which considers expressway node distinctions.EV travel characteristics are extracted from the NHTS2017 datasets to assist in constructing the model.Differentiated decision-making is achieved by utilizing improved Lognormal and Sigmoid functions.Finally,the proposed method is applied to a case study of the Lian-Huo expressway.An analysis of EV charging power converges with historical data and shows that the method accurately predicts the charging loads of EVs on expressways,thus revealing the efficacy of the proposed approach in predicting EV charging dynamics under expressway scenarios. 展开更多
关键词 Charging load prediction electric vehicle EXPRESSWAY Gaussian mixed model STATE-OF-CHARGE
下载PDF
Using machine learning to identify primary features in choosing electric vehicles based on income levels
10
作者 Mingjun Ma Eugene Pinsky 《Data Science and Management》 2024年第1期1-6,共6页
An electric vehicle is becoming one of the popular choices when choosing a vehicle.People are generally impressed with electric vehicles’zero-emission and smooth drives,while unstable battery duration keeps people aw... An electric vehicle is becoming one of the popular choices when choosing a vehicle.People are generally impressed with electric vehicles’zero-emission and smooth drives,while unstable battery duration keeps people away.This study tries to identify the primary factors that affect the likelihood of owning an electric vehicle based on different income levels.We divide the dataset into three subgroups by household income from$50,000 to$150,000 or low-medium income level,$150,000 to$250,000 or medium-high income level,and$250,000 or above,the high-income level.We considered several machine learning classifiers,and naive Bayes gave us a relatively higher accuracy than other algorithms in terms of overall accuracy and F1 scores.Based on the probability analysis,we found that for each of these groups,one-way commuting distance is the most important for all three income levels. 展开更多
关键词 Unbabalced data electric vehicle Machine learning Sampling with replacement Supervised learning Naive Bayes
下载PDF
Investigation into Impedance Measurements for Rapid Capacity Estimation of Lithium-ion Batteries in Electric Vehicles
11
作者 Xiaoyu Zhao Zuolu Wang +1 位作者 Eric Li Haiyan Miao 《Journal of Dynamics, Monitoring and Diagnostics》 2024年第1期21-31,共11页
With the dramatic increase in electric vehicles(EVs)globally,the demand for lithium-ion batteries has grown dramatically,resulting in many batteries being retired in the future.Developing a rapid and robust capacity e... With the dramatic increase in electric vehicles(EVs)globally,the demand for lithium-ion batteries has grown dramatically,resulting in many batteries being retired in the future.Developing a rapid and robust capacity estimation method is a challenging work to recognize the battery aging level on service and provide regroup strategy of the retied batteries in secondary use.There are still limitations on the current rapid battery capacity estimation methods,such as direct current internal resistance(DCIR)and electrochemical impedance spectroscopy(EIS),in terms of efficiency and robustness.To address the challenges,this paper proposes an improved version of DCIR,named pulse impedance technique(PIT),for rapid battery capacity estimation with more robustness.First,PIT is carried out based on the transient current excitation and dynamic voltage measurement using the high sampling frequency,in which the coherence analysis is used to guide the selection of a reliable frequency band.The battery impedance can be extracted in a wide range of frequency bands compared to the traditional DCIR method,which obtains more information on the battery capacity evaluation.Second,various statistical variables are used to extract aging features,and Pearson correlation analysis is applied to determine the highly correlated features.Then a linear regression model is developed to map the relationship between extracted features and battery capacity.To validate the performance of the proposed method,the experimental system is designed to conduct comparative studies between PIT and EIS based on the two 18650 batteries connected in series.The results reveal that the proposed PIT can provide comparative indicators to EIS,which contributes higher estimation accuracy of the proposed PIT method than EIS technology with lower time and cost. 展开更多
关键词 electric vehicles electrochemical impedance spectroscopy lithium-ion battery pulse impedance technique rapid capacity estimation
下载PDF
Battery Management System with State ofCharge Indicator for Electric Vehicles 被引量:9
12
作者 孙逢春 张承宁 郭海涛 《Journal of Beijing Institute of Technology》 EI CAS 1998年第2期166-171,共6页
Aim To research and develop a battery management system(BMS)with the state of charge(SOC)indicator for electric vehicles (EVs).Methods On the basis of analyzing the electro-chemical characteristics of lead-acid. batte... Aim To research and develop a battery management system(BMS)with the state of charge(SOC)indicator for electric vehicles (EVs).Methods On the basis of analyzing the electro-chemical characteristics of lead-acid. battery, the state of charge indicator for lead-acid battery was developed by means of an algorithm based on combination of ampere-hour, Peukert's equation and open-voltage method with the compensation of temperature,aging,self- discharging,etc..Results The BMS based on this method can attain an accurate surplus capa- city whose error is less than 5% in static experiments.It is proved by experiments that the BMS is reliable and can give the driver an accurate surplus capacity,precisely monitor the individual battery modules as the same time,even detect and warn the problems early,and so on. Conclusion A BMS can make the energy of the storage batteries used efficiently, develop the batteries cycle life,and increase the driving distance of EVs. 展开更多
关键词 electric vehicle (EV) the battery management system (BMS) the stage of charge (SOC)indicator lead-acid battery
下载PDF
Multiple Purpose Simulation for Electric Vehicles 被引量:1
13
作者 余晓江 祝嘉光 《Journal of Beijing Institute of Technology》 EI CAS 1998年第2期196-202,共7页
Aim Toshorten integral design period of electric vehicles Methods The electric vehicle simulation program(EVSP), a modular user-friendly program which is written in Borland C++ OWL for Windows was developed. Results ... Aim Toshorten integral design period of electric vehicles Methods The electric vehicle simulation program(EVSP), a modular user-friendly program which is written in Borland C++ OWL for Windows was developed. Results EVSP allows simulating the dynamic and the economy performance of electric vehicles.EVSP provides many kinds of data input module,a large components library of electric vehicles and several kinds of speed cycle with these library,it is easily to develop a new concept of different drive trains or even to compare or improve the existing electric vehicles. The paper simulated the performance of YW6120DD Electric Bus, and analyzed the test results comparing with simulation results Conclusion The simulation results indicate that the EVSP may contribute to the developments of electric vehicles in general and the definition of the optimal match management in the drive train in particular. 展开更多
关键词 electric vehicle: drive train : simulation dynamic performance economy performance
下载PDF
Reliability evaluation of IGBT power module on electric vehicle using big data 被引量:1
14
作者 Li Liu Lei Tang +5 位作者 Huaping Jiang Fanyi Wei Zonghua Li Changhong Du Qianlei Peng Guocheng Lu 《Journal of Semiconductors》 EI CAS CSCD 2024年第5期50-60,共11页
There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction... There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction temperature estimation approach based on neural network without additional cost is proposed and the lifetime calculation for IGBT using electric vehicle big data is performed.The direct current(DC)voltage,operation current,switching frequency,negative thermal coefficient thermistor(NTC)temperature and IGBT lifetime are inputs.And the junction temperature(T_(j))is output.With the rain flow counting method,the classified irregular temperatures are brought into the life model for the failure cycles.The fatigue accumulation method is then used to calculate the IGBT lifetime.To solve the limited computational and storage resources of electric vehicle controllers,the operation of IGBT lifetime calculation is running on a big data platform.The lifetime is then transmitted wirelessly to electric vehicles as input for neural network.Thus the junction temperature of IGBT under long-term operating conditions can be accurately estimated.A test platform of the motor controller combined with the vehicle big data server is built for the IGBT accelerated aging test.Subsequently,the IGBT lifetime predictions are derived from the junction temperature estimation by the neural network method and the thermal network method.The experiment shows that the lifetime prediction based on a neural network with big data demonstrates a higher accuracy than that of the thermal network,which improves the reliability evaluation of system. 展开更多
关键词 IGBT junction temperature neural network electric vehicles big data
下载PDF
Innovation and Firm Co-ownership Network in China’s Electric Vehicle Industry
15
作者 JIN Zerun ZHU Shengjun 《Chinese Geographical Science》 SCIE CSCD 2024年第2期195-209,共15页
Firms are embedded in complex networks,where diverse ideas combine and generate new ideas.Shareholders of firms are of-ten seen as critical external resources that have significant influence on firm innovation.The cur... Firms are embedded in complex networks,where diverse ideas combine and generate new ideas.Shareholders of firms are of-ten seen as critical external resources that have significant influence on firm innovation.The current literature tends to focus on the rela-tionship between firms and their shareholders,while paying less attention to the connections between firms with the same shareholders.This article identifies two types of network spillover effects,intra-city network effect and inter-city network effect,by visualizing the co-ownership networks in China’s electric vehicle(EV)industry.We find that firms with the same shareholders,which are defined as co-owned EV firms,are more innovative than non-co-owned ones.Furthermore,there are two dominant types of firm co-ownership ties formed by corporate and financial institution shareholders.While corporate shareholders help exploiting local tacit knowledge,financial institutions are more active in bridging inter-city connections.The conclusion is confirmed at both firm and city levels.This paper theor-izes the firm co-ownership network as a new form of institutional proximity and tested the result empirically.For policy consideration,we have emphasized the importance of building formal or informal inter-firm network,and the government should further enhance the knowledge flow channel by institutional construction. 展开更多
关键词 firm co-ownership intra-city network inter-city network technological innovation electric vehicle China
下载PDF
Urban Electric Vehicle Charging Station Placement Optimization with Graylag Goose Optimization Voting Classifier
16
作者 Amel Ali Alhussan Doaa Sami Khafaga +2 位作者 El-Sayed M.El-kenawy Marwa M.Eid Abdelhameed Ibrahim 《Computers, Materials & Continua》 SCIE EI 2024年第7期1163-1177,共15页
To reduce the negative effects that conventional modes of transportation have on the environment,researchers are working to increase the use of electric vehicles.The demand for environmentally friendly transportation ... To reduce the negative effects that conventional modes of transportation have on the environment,researchers are working to increase the use of electric vehicles.The demand for environmentally friendly transportation may be hampered by obstacles such as a restricted range and extended rates of recharge.The establishment of urban charging infrastructure that includes both fast and ultra-fast terminals is essential to address this issue.Nevertheless,the powering of these terminals presents challenges because of the high energy requirements,whichmay influence the quality of service.Modelling the maximum hourly capacity of each station based on its geographic location is necessary to arrive at an accurate estimation of the resources required for charging infrastructure.It is vital to do an analysis of specific regional traffic patterns,such as road networks,route details,junction density,and economic zones,rather than making arbitrary conclusions about traffic patterns.When vehicle traffic is simulated using this data and other variables,it is possible to detect limits in the design of the current traffic engineering system.Initially,the binary graylag goose optimization(bGGO)algorithm is utilized for the purpose of feature selection.Subsequently,the graylag goose optimization(GGO)algorithm is utilized as a voting classifier as a decision algorithm to allocate demand to charging stations while taking into consideration the cost variable of traffic congestion.Based on the results of the analysis of variance(ANOVA),a comprehensive summary of the components that contribute to the observed variability in the dataset is provided.The results of the Wilcoxon Signed Rank Test compare the actual median accuracy values of several different algorithms,such as the voting GGO algorithm,the voting grey wolf optimization algorithm(GWO),the voting whale optimization algorithm(WOA),the voting particle swarm optimization(PSO),the voting firefly algorithm(FA),and the voting genetic algorithm(GA),to the theoretical median that would be expected that there is no difference. 展开更多
关键词 electric vehicle graylag goose optimization metaheuristics OPTIMIZATION machine learning
下载PDF
Techno-Economic Optimization of Novel Stand-Alone Renewable Based Electric Vehicle Charging Station near Bahria Town Karachi,Sindh Pakistan
17
作者 Aneel Kumar Mahesh Kumar +1 位作者 Amir Mahmood Soomro Laveet Kumar 《Energy Engineering》 EI 2024年第6期1439-1457,共19页
Electric vehicles (EVs) are the most interesting and innovative technology in the 21st century because of theirenormous advantages, both technically and economically. Their emissions rate compared to fuel-based vehicl... Electric vehicles (EVs) are the most interesting and innovative technology in the 21st century because of theirenormous advantages, both technically and economically. Their emissions rate compared to fuel-based vehicles isnegligible as they do not consume fuel and hence do not emit any harmful gases. However, their bulk production,adoption and lack of charging stations increase the stress of power stations due to modern-day lifestyles. If Electricvehicles demand increases drastically then conventional power stations will not bear their demand and if theygenerate electricity by conventional means it will be very costly and may further add greenhouse gases. Therefore,this research provides the techno-economic assessment of a stand-alone renewable-dependent electric vehiclecharging station, excluding any burden on electrical utility. The proposed study is carried out in Bahria Town,Karachi, a city in Pakistan. In this study, HOMER Pro software was utilized for techno-economic assessment. Ahybrid system comprising solar Photovoltaic/Wind Turbine/Fuel cells and battery storage is included in the model.Solar and wind resources were taken from NASA’s website, where charging stations will be integrated. The overallresults show promising in terms of total Net Present Cost and the Cost of Energy which are 2.72M $ and 0.237 $,respectively. The total system generation is 3,598 Megawatt hours per year, and the total energy consumption is 885Megawatt hours per year. 展开更多
关键词 electrical vehicle techno economic analysis solar energy wind energy hydrogen energy
下载PDF
Design and Analysis of Power and Transmission System of Downhole Pure Electric Command Vehicle
18
作者 Md Jahangir Alam Md Shahriar Sujan +1 位作者 Md. Al Imran Tapu Joy Howlader 《Journal of Transportation Technologies》 2024年第1期31-52,共22页
Electric vehicles use electric motors, which turn electrical energy into mechanical energy. As electric motors are conventionally used in all the industry, it is an established development site. It’s a mature technol... Electric vehicles use electric motors, which turn electrical energy into mechanical energy. As electric motors are conventionally used in all the industry, it is an established development site. It’s a mature technology with ideal power and torque curves for vehicular operation. Conventional vehicles use oil and gas as fuel or energy storage. Although they also have an excellent economic impact, the continuous use of oil and gas threatened the world’s reservation of total oil and gas. Also, they emit carbon dioxide and some toxic ingredients through the vehicle’s tailpipe, which causes the greenhouse effect and seriously impacts the environment. So, as an alternative, electric car refers to a green technology of decarbonization with zero emission of greenhouse gases through the tailpipe. So, they can remove the problem of greenhouse gas emissions and solve the world’s remaining non-renewable energy storage problem. Pure electric vehicles (PEV) can be applied in all spheres, but their special implementation can only be seen in downhole operations. They are used for low noise and less pollution in the downhole process. In this study, the basic structure of the pure electric command vehicle is studied, the main components of the command vehicle power system, namely the selection of the drive motor and the power battery, are analyzed, and the main parameters of the drive motor and the power battery are designed and calculated. The checking calculation results show that the power and transmission system developed in this paper meets the design requirements, and the design scheme is feasible and reasonable. 展开更多
关键词 Pure electric vehicles TRANSMISSION GEARS electronic Differential Control Algorithms
下载PDF
Electric Vehicle Charging Load Optimization Strategy Based on Dynamic Time-of-Use Tariff
19
作者 Shuwei Zhong Yanbo Che Shangyuan 《Energy Engineering》 EI 2024年第3期603-618,共16页
Electric vehicle(EV)is an ideal solution to resolve the carbon emission issue and the fossil fuels scarcity problem in the future.However,a large number of EVs will be concentrated on charging during the valley hours ... Electric vehicle(EV)is an ideal solution to resolve the carbon emission issue and the fossil fuels scarcity problem in the future.However,a large number of EVs will be concentrated on charging during the valley hours leading to new load peaks under the guidance of static time-of-use tariff.Therefore,this paper proposes a dynamic time-of-use tariff mechanism,which redefines the peak and valley time periods according to the predicted loads using the fuzzy C-mean(FCM)clustering algorithm,and then dynamically adjusts the peak and valley tariffs according to the actual load of each time period.Based on the proposed tariff mechanism,an EV charging optimization model with the lowest cost to the users and the lowest variance of the grid-side load as the objective function is established.Then,a weight selection principle with an equal loss rate of the two objectives is proposed to transform the multi-objective optimization problem into a single-objective optimization problem.Finally,the EV charging load optimization model under three tariff strategies is set up and solved with the mathematical solver GROUBI.The results show that the EV charging load optimization strategy based on the dynamic time-of-use tariff can better balance the benefits between charging stations and users under different numbers and proportions of EVs connected to the grid,and can effectively reduce the grid load variance and improve the grid load curve. 展开更多
关键词 Dynamic time-of-use tariff peak and valley time electric vehicle multi-objective optimization
下载PDF
Strategic Placement of Charging Stations for Enhanced Electric Vehicle Adoption in San Diego, California
20
作者 Kajal Sheth Dhvanil Patel 《Journal of Transportation Technologies》 2024年第1期64-81,共18页
California mandated that 100% of vehicles sold must be electric by 2035. As electric vehicles (EVs) reach a higher penetration of the car sector, cities will need to provide publicly accessible charging stations to me... California mandated that 100% of vehicles sold must be electric by 2035. As electric vehicles (EVs) reach a higher penetration of the car sector, cities will need to provide publicly accessible charging stations to meet the charging demand of people who do not have access to a private charging spot like a personal garage. We have chosen to limit our scope to San Diego County due to its non-trivial size, well-defined shape, and dependence on personal vehicles;this project models 100% of current vehicles as electric, roughly 2.5 million. By planning for the future, our model becomes more useful as well as more equitable. We anticipate that our model will find locations that can service multiple population centers, while also maximizing distance to other stations. Sensitivity analysis and testing of our algorithms are conducted for Coronado Island, an island with 24,697 residents. Our formulation is then scaled to set the parameters for the whole county. 展开更多
关键词 electric vehicles Charging Stations Energy Policy Infrastructure Planning Environmental Sustainability
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部