The complex of mineralogical methods was developed to obtain reliable data about mineral composition of bauxites and new crystal-chemical information (the whole cycle of used chemical elements, methods of residue util...The complex of mineralogical methods was developed to obtain reliable data about mineral composition of bauxites and new crystal-chemical information (the whole cycle of used chemical elements, methods of residue utilization, position of residue tails in dump pits). Natural and technogenic structures were studied as sources of necessary chemical elements and useful properties.展开更多
Study of the concentration of major,trace,and rare earth elements(REE)in the Shahindezh karst bauxite deposit,northwestern Iran clarifies the relationship of the tetrad effect with geochemical parameters in the bauxit...Study of the concentration of major,trace,and rare earth elements(REE)in the Shahindezh karst bauxite deposit,northwestern Iran clarifies the relationship of the tetrad effect with geochemical parameters in the bauxite ores.The existence of irregular curves in the chondrite-normalized REE patterns as well as non-CHARAC behavior of geochemically isovalent pairs(Y/Ho)are related to the tetrad effect.The meaningful positive correlation between the sizes of the calculated T3 tetrad effect and some geochemical factors such as Y/Ho,ΣREE,La/Y,(La/Yb)N,and(LREE/HREE)N as well as some major oxides-based parameters like Al2O3+LOI/SiO2+Fe2O3,Al2O3/Fe2O3,Al2O3+LOI,IOL,and SiO2+Fe2O3indicate that the studied bauxite horizon was likely deposited by different(acidic and/or alkalic)solutions at different stages.The lower part of the studied horizon with a thickness of^4.7 m displays alkali characteristics whereas the upper parts of the horizon with a thickness of^5.3 m are characterized by more acidic conditions.These results are fully supported by the co-occurrence of convex-concave tetrad effect curves in the chondrite-normalized REE patterns.Therefore,the tetrad effect phenomenon used in this study has proved to be a good and reliable geochemical proxy to assess the conditions of the depositional environment in the Shahindezh bauxite ores.展开更多
Landscape distribution, macroscopic, microscopic, mineral and geochemical characterizations were conducted on the Doumbouo-Fokoué bauxite ore deposit in order to estimate bauxites potential and its implication to...Landscape distribution, macroscopic, microscopic, mineral and geochemical characterizations were conducted on the Doumbouo-Fokoué bauxite ore deposit in order to estimate bauxites potential and its implication to general lowering of the relief. Fourteen bauxitic plateaus covering a surface area of 5.7 km2 were identified. Bauxitic pedons show deep weathered profiles (10.0 - 12.0 m) with thick bauxitic mantle (4.0 - 8.0 m). Saprolite and pisolith bauxitic facies own high aluminium (47.5% - 49.5% Al2O3), relatively low iron (20.0% - 22.0% Fe2O3) and low silica contents (1.8% - 7.6% SiO2). Gibbsite is the dominant mineral (49% - 68% of minerals detected by X-ray);meanwhile hematite, goethite and kaolinite occur in small amounts. Bauxitization corresponds to intense allitization with abundant accumulation of gibbsite and development of lateritic iron bearing ortho-bauxites. Bauxite ores yielded bauxite reserves of 9.2 million tons. They occur as old and residual bauxitic mantles representing remnants of the Miocene residual lateritic deposits in West Cameroon referring to the African surface of Valeton [1]. Its mean altitude (1532 - 1590 m als) below the African surface reveals general lowering of the relief.展开更多
The Sangarédi bauxite deposit in the Republic of Guinea contains several bauxite types depending on their litho-genetics. For rational and sustainable exploitation, determining the physical and mechanical propert...The Sangarédi bauxite deposit in the Republic of Guinea contains several bauxite types depending on their litho-genetics. For rational and sustainable exploitation, determining the physical and mechanical properties of these different bauxite types is essential for mining companies. This paper presents a model for the physico-mechanical characterization of Sangarédi bauxites according to their litho-genetic type. Eight pits were drilled, and samples were collected from different layers at different depth intervals for each bauxite type. Physical and mechanical characterization tests were then carried out on 27 samples to determine the following parameters: water of absorption (%), compressive strength (kgf/cm2) and dynamic tensile strength (kgf/cm2). The effect of depth of sampling on these physico-mechanical parameters was evaluated. An average value of the parameters was made for each bauxite type. The results showed that the physico-mechanical characteristics of bauxites depend on the depth of sample collection, and the average value of the parameters constitutes the representative values of the bauxite type. Finally, a comparative study of the average value of the physico-mechanical parameters of the different bauxite types was carried out.展开更多
A succession of Permian bauxite deposits are concentrated in Wuchuan,Zheng’an and Daozhen counties of northern Guizhou,South China.These deposits overlie contrast bedrocks,which are discriminated from the other bauxi...A succession of Permian bauxite deposits are concentrated in Wuchuan,Zheng’an and Daozhen counties of northern Guizhou,South China.These deposits overlie contrast bedrocks,which are discriminated from the other bauxites of karst type in South China.Horizons of these bauxites are typified by sandwiched constructure,the upper and the lower layers of bauxitic claystone interbedded by the ore layer,and by abundant pyrite occurring in the ore and the lower layers.A geochemical study was carried out on samples from two boreholes of bauxitic profiles with claystone and carbonate bedrocks,respectively.It shows that the diverse profiles illustrate contrast mobility of elements.The profile overlying clayey bedrock is depleted in most elements including REE but variously enriched in HFSE,Pb,Mo,and half mass of Al2O3was leached out;the profile overlying carbonatic bedrock is highly enriched in REE and moderately in HFSE and Pb,its Al2O3mass was basically preserved.Both horizons are extremely enriched in alkali of Li and variously in Ce.A new genetic model is suggested accordingly.Tropic climate,coastal plain and frequent transgression and regression during the Permian caused a transition of weathering profiles from laterization to bauxitization in northern Guizhou.Massive pyrite in the horizons formed under reducing environment during the transgression through combining of iron enriched in the laterite profile and sulfur from the soaking and penetrating seawater;during the regression,oxidation of pyrite caused strong acid medium and induced the bauxitization.展开更多
Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore charact...Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems.展开更多
The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and micr...The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and microtopography.The results showed a significant decrease in Na_(2)O content(>30 wt.%)of FGD gypsum-treated bauxite residue after 30 min of mechanical ball milling.Mechanical ball milling resulted in differentiation of the elemental distribution,modification of the minerals in crystalline structure,and promotion in the dissolution of alkaline minerals,thus enhancing the acid neutralization capacity of bauxite residue.5 wt.%FGD gypsum combined with 30 min mechanical ball milling was optimal for the dealkalization of bauxite residue.展开更多
A novel integrated approach to remove the free alkalis and stabilize solid-phase alkalinity by controlling the release of Ca from desulfurization gypsum was developed.The combination of recycled FeCl_(3)solution and E...A novel integrated approach to remove the free alkalis and stabilize solid-phase alkalinity by controlling the release of Ca from desulfurization gypsum was developed.The combination of recycled FeCl_(3)solution and EDTA activated desulfurization gypsum lowered the bauxite residue pH to 7.20.Moreover,it also improved the residual Ca state,with its contribution to the total exchangeable cations increased(68%-92%).Notably,the slow release of exchangeable Ca introduced through modified desulfurization gypsum induced a phase transition of the alkaline minerals.This treatment stabilized the dealkalization effect of bauxite residue via reducing its overall acid neutralization capacity in abating pH rebound.Hence,this approach can provide guidance for effectively utilizing desulfurization gypsum to achieve stable regulation of alkalinity in bauxite residue.展开更多
This study was focused to assess major and trace elements in bauxitic duricrusts from Ngaoundal and its surroundings in order to establish their mining interest. To this end, fieldworks, mineralogical and geochemical ...This study was focused to assess major and trace elements in bauxitic duricrusts from Ngaoundal and its surroundings in order to establish their mining interest. To this end, fieldworks, mineralogical and geochemical analyses were carried out. Four facies of duricrust were identified and characterized from the summit to the top of the slope of the Ngaoundal mountain: scoriaceous, pisolitic, nodular and massive. Mineralogical and geochemical analyses performed on 16 samples, revealed a significant concentration of Al<sub>2</sub>O<sub>3</sub> mainly in the scoriaceous facies (over 45% in grade), moderate in Fe<sub>2</sub>O<sub>3</sub> (averaging 23.69%) and SiO<sub>2</sub> (averaging 21.7%). Trace elements were generally low, excluding Cr (421 ppm on average), Zr (327 ppm on average and V (213 ppm on average). In addition, the limited quantities of alkalis (Na<sub>2</sub>O, K<sub>2</sub>O) and alkaline earths metals (MgO, CaO) coupled with the very high values of Chemical Index of Alteration (CIA) and Mineralogical Index of Alteration (MIA), (more than 99%) attest to the intense weathering of the studied materials. Allitization and monosiallitization constituted the crystallochemical phenomena that have led to the development of bauxitic minerals. More than 90% of gibbsite in scoriaceous facies, 52.21% - 76.01% of kaolinite in pisolitic facies and more than 40% of hematite in nodular facies were quantified. The relationships between the constitutive components indicated their interdependency during the bauxitization phenomenon. The mineralogical and geochemical properties highlighted the mining interest of the studied duricrusts to be valorized.展开更多
The chemical and mineralogical composition of bauxite deposits is a key factor in the profitability of refining processes. The study of bauxites from the Saföfö site has assessed variations in chemical and m...The chemical and mineralogical composition of bauxite deposits is a key factor in the profitability of refining processes. The study of bauxites from the Saföfö site has assessed variations in chemical and mineralogical composition under various conditions, as well as the optimum conditions for their exploitation. The methodologies used in this study include experimental methods for determining moisture content, chemical composition, mineralogical composition, and specific density of bauxite. The results show significant variation in moisture content among the bauxite samples, with values ranging from 2.90% to 17.80%. The silica percentages in the samples range from 1.69% to 8.14%, while alumina percentages vary from 36.81% to 54.03%. After calcination, alumina oxide percentages range from 40% to 75%. After chemical activation, alumina oxides Al2O3 range from 40% to over 50%. Gibbsite is the most abundant mineral, accounting for about 60% - 70% of the total composition of the bauxite samples. Samples A to F have bulk densities varying between approximately 3.6 and 3.9. Sample B has the highest density, around 3.9, while sample C has the lowest, at around 3.5. Bauxite mining at the Saföfö site offers significant potential for the alumina industry, provided appropriate processing methods are selected to maximize quality and profitability while minimizing environmental impact.展开更多
Reaction behaviors of sulfur and iron compounds in sodium aluminate solutions were investigated. The results show that iron compounds can remarkably remove the S2 but cannot get rid of S2Oc2-, SO^2- and SO4^-2 in sodi...Reaction behaviors of sulfur and iron compounds in sodium aluminate solutions were investigated. The results show that iron compounds can remarkably remove the S2 but cannot get rid of S2Oc2-, SO^2- and SO4^-2 in sodium aluminate solutions. The removal efficiency of S^2- using ferrous compound and ferric compound can reach 86.10% and 92.70% respectively when the iron compounds were added with a molar ratio of 2:1 compared with the sulfur in liquors at 100℃. Moreover, several same compounds are formed in those two desulfurization processes with ferrous or ferric compounds, including erdite, hematite, amorphous ferrous sulfide, polymerized sulfur-iron compounds and ferric sulfate. The major difference between these two processes is that the erdite generated from ferrous compounds at the initial reaction stage will convert to a sodium-free product FeS2 at the subsequent stage.展开更多
The flotation of diaspore and three kinds of silicate minerals, including kaolinite, illite and pyrophyllite, using an organosilicon cationic surfactant (TAS101) as collector and starch as depressant was investigated....The flotation of diaspore and three kinds of silicate minerals, including kaolinite, illite and pyrophyllite, using an organosilicon cationic surfactant (TAS101) as collector and starch as depressant was investigated. The results show that both diaspore and aluminosilicate minerals float readily with organosilicon cationic collector TAS101 at pH values of 4 to 10. Starch has a strong depression effect for diaspore in the alkaline pH region but has little influence on the flotation of aluminosilicate minerals. It is possible to separate diaspore from aluminosilicate minerals using the organosilicon cationic collector and starch depressant. Further studies of bauxite ore flotation were also conducted, and the reverse flotation separation process was adopted. The concentrates with the mass ratio of Al2O3 to SiO2 of 9.58 and Al2O3 recovery of 83.34% are obtained from natural bauxite ore with the mass ratio of Al2O3 to SiO2 of 6.1 at pH value of 11 using the organosilicon cationic collector and starch depressant.展开更多
For the low-grade gibbsitic bauxite,the leaching rate of alumina is very low during the Bayer process.The acid leaching method is attracting more attention,and the hydrochloric acid leaching was developed rapidly.The ...For the low-grade gibbsitic bauxite,the leaching rate of alumina is very low during the Bayer process.The acid leaching method is attracting more attention,and the hydrochloric acid leaching was developed rapidly.The mineral composition and chemical composition were investigated by X-ray diffraction analysis and semi-quantitative analysis.The thermodynamics of leaching process was analyzed.The results show that the major minerals in the bauxite are gibbsite,secondly goethite and quartz,anatase and so on.The acid leaching reactions of the bauxite would be thermodynamically easy and completed.Under the conditions that ore granularity is less than-55 μm,the L/S ratio is 100:7,and the leaching temperature is 373-383 K,the leaching time is 120 min and the concentration of HCl is 10%,both the leaching rates of Al and Fe are over 95%.The main composition of leaching slag is SiO2 which is easy for comprehensive utilization.展开更多
The sulfur phase in high sulfur-containing bauxite was studied by an X-ray diffraction analysis and a chemistry quantitative analysis.The methods for the removal of different shaped sulfur were also discussed.The resu...The sulfur phase in high sulfur-containing bauxite was studied by an X-ray diffraction analysis and a chemistry quantitative analysis.The methods for the removal of different shaped sulfur were also discussed.The results show that sulfur phases in high sulfur-containing bauxites exist in the main form of sulfide sulfur (pyrite) or sulfate sulfur,and the main sulfur forms of bauxites from different regions are not the same.Through a combination of an X-ray diffraction analysis and a chemistry quantitative analysis,the sulfur phases of high sulfur-containing bauxite could be accurately investigated.Deciding the main sulfur form of high sulfur-containing bauxite could provide theoretical instruction for choosing methods for the removal of sulfur from bauxite,and an oxidizing-roasting process is an effective way to remove sulfide sulfur from high sulfur-containing bauxite,the content of S^2-in crude ore in the digestion liquor is above 1.7 g/L,but in the roasted ore digestion liquor,it is below 0.18 g/L.Using the sodium carbonate solution washing technology to wash bauxite can effectively remove sulfate sulfur,the content of the total sulfur in ore is lowered to below 0.2% and can meet the production requirements for the sulfur content.展开更多
Acoupled biharmonic spline and linear interpolation algorithm was proposed to create a three-dimensional smooth deposit model with minimal curvature containing grade and position data. To obtain the optimal technical ...Acoupled biharmonic spline and linear interpolation algorithm was proposed to create a three-dimensional smooth deposit model with minimal curvature containing grade and position data. To obtain the optimal technical parameters, such as cuttingheight and drum diameter, a virtual longwall mining procedure was modelled by simulating the actual fully mechanized longwall mining process. Based on the above work, a bauxite deposit in a longwall mining panel was modelled by scattered grade data from ores sampled on the entry wall. The deposit was then demarcated by industrial indexes and sliced according to the virtual longwallmining procedure. The results show that the proposed interpolation algorithm can depict the stratiform structure of bauxite depositsand that the uncovered bauxite deposit has high proportions of high-grade and rich ore. The ranges of optimal cutting height and drum diameters are 1.72-2.84 m and 1.42-1.72 m, respectively. Finally, an intellectualized longwall mining procedure was designed to guide the mining process with the lowest dilution and loss rates.展开更多
The effect of electrolyte on settling behavior of kaolinite was studied. Effects of hard water on selective flocculation of diasporic bauxite was tested and the measures were taken to eliminate the effects of Ca2+ an...The effect of electrolyte on settling behavior of kaolinite was studied. Effects of hard water on selective flocculation of diasporic bauxite was tested and the measures were taken to eliminate the effects of Ca2+ and Mg2+ in hard water. The results indicated that, not only the concentration of electrolyte ions but also the ionic valence of the electrolyte ions affects the settling behavior of kaolinite; hard water significantly affects its selective flocculation owing to Ca2+ and Mg2+; general dispersants could not eliminate the effects of Ca2+ and Mg2+. Self-made softening agent in our lab could weaken or eliminate the effects of hard water on flocculation processes. The results of molecular dynamics simulation show that softening agent molecules could restrict Ca2+ and prevent them from playing their roles, so as to eliminate the effects. The continuous pilot experiment results of bauxite flocculation were even better than those obtained in laboratory.展开更多
To lower the cost of bauxite electrolysis desulfurization using NaOH solution as the supporting electrolyte, effects of electrolyte recycling on bauxite electrolysis desulfurization were investigated. The results in...To lower the cost of bauxite electrolysis desulfurization using NaOH solution as the supporting electrolyte, effects of electrolyte recycling on bauxite electrolysis desulfurization were investigated. The results indicate that electrode corrosion, cell voltage, the desulfurization rate and the pH value of the electrolyte have no obvious changes with the increase of cycle times. Additionally, there were some transitive valence S-containing ions in electrolyte after the electrolysis, such as SO3^2-,S2O3^2- . However, most of the sulfur in bauxite was eventually oxidized into SO4^2- into the electrolyte, and these S-containing ions did not affect the recycling utilization for electrolyte.展开更多
Bauxite residue is a highly alkaline material generated from the production of alumina in which bauxite is dissolved in caustic soda.Approximately 4.4 billion tons of bauxite residues are either stockpiled or landfill...Bauxite residue is a highly alkaline material generated from the production of alumina in which bauxite is dissolved in caustic soda.Approximately 4.4 billion tons of bauxite residues are either stockpiled or landfilled,creating environmental risks either from the generation of dust or migration of filtrates.High alkalinity is the critical factor restricting complete utilization of bauxite residues,whilst the application of alkaline regulation agents is costly and difficult to apply widely.For now,current industrial wastes,such as waste acid,ammonia nitrogen wastewater,waste gypsum and biomass,have become major problems restricting the development of the social economy.Regulation of bauxite residues alkalinity by industrial waste was proposed to achieve‘waste control by waste’with good economic and ecological benefits.This review will focus on the origin and transformation of alkalinity in bauxite residues using typical industrial waste.It will propose key research directions with an emphasis on alkaline regulation by industrial waste,whilst also providing a scientific reference point for their potential use as amendments to enhance soil formation and establish vegetation on bauxite residue disposal areas(BRDAs)following large-scale disposal.展开更多
Aiming at alkaline problem of bauxite residue,this work focused variation of alkaline characteristics in bauxite residue through phosphogypsum treatment.The results demonstrated that the pH of bauxite residue reduced ...Aiming at alkaline problem of bauxite residue,this work focused variation of alkaline characteristics in bauxite residue through phosphogypsum treatment.The results demonstrated that the pH of bauxite residue reduced from initial 10.83 to 8.70 when 1.50 wt%phosphogypsum was added for 91 d.The removal rates of free alkali and exchangeable sodium were 97.94%and 75.87%,respectively.Meanwhile,significant positive correlations(P<0.05)existed between pH and free alkali,exchangeable sodium.The effect of free alkali composition was CO3^2–>OH^–>AlO2^–>HCO3^–.In addition,alkaline phase decreased from 52.81%to 48.58%and gypsum stably presented in bauxite residue which continuously provided Ca^2+to inhibit dissolution of combined alkali.Furthermore,phosphogypsum promoted formation of macroaggregate structure,increased Ca^2+,decreased Na+and Al^3+on the surface of bauxite residue significantly,ultimately promoting soil formation in bauxite residue.展开更多
Bauxite residue is an alkaline waste material in the process of alumina production due to its characteristics of higher salinity and alkalinity,which results in environmental issues and extremely restricts the sustain...Bauxite residue is an alkaline waste material in the process of alumina production due to its characteristics of higher salinity and alkalinity,which results in environmental issues and extremely restricts the sustainable development of alumina industries.In this work,we conduct a column experiment to study the effects of two amendments on aggregate stability and variations in alkaline minerals of bauxite residue.The two amendments are phosphogypsum(PG)and phosphogypsum and vermicompost(PVC).The dominant fraction in aggregate is 1–0.25 mm in diameter on the surface,which takes up 39.34%,39.38%,and 44.51%for CK,PG,and PVC,respectively.Additions of PG and PVC decreased pH,EC,ESP,exchangeable Na^+concentration and the percentage of alkaline minerals,and then increased exchangeable Ca^2+concentration in bauxite residue.There was significant positive correlation between pH and exchangeable Na^+concentration,the percentage of cancrinite,tricalcium aluminate and calcite;while negative correlation was found in pH value versus exchangeable Ca^2+concentration.Theses findings confirmed that additions of phosphogypsum and vermicompost have a stimulative effect on aggregate stability in bauxite residue.In particular,amendment neutralization(phosphogypsum+vermicompost)in column represents an advantage for large-scale simulation of vegetation rehabilitate in bauxite residue disposal areas.展开更多
文摘The complex of mineralogical methods was developed to obtain reliable data about mineral composition of bauxites and new crystal-chemical information (the whole cycle of used chemical elements, methods of residue utilization, position of residue tails in dump pits). Natural and technogenic structures were studied as sources of necessary chemical elements and useful properties.
基金supported financially by the Research Bureau of Urmia University
文摘Study of the concentration of major,trace,and rare earth elements(REE)in the Shahindezh karst bauxite deposit,northwestern Iran clarifies the relationship of the tetrad effect with geochemical parameters in the bauxite ores.The existence of irregular curves in the chondrite-normalized REE patterns as well as non-CHARAC behavior of geochemically isovalent pairs(Y/Ho)are related to the tetrad effect.The meaningful positive correlation between the sizes of the calculated T3 tetrad effect and some geochemical factors such as Y/Ho,ΣREE,La/Y,(La/Yb)N,and(LREE/HREE)N as well as some major oxides-based parameters like Al2O3+LOI/SiO2+Fe2O3,Al2O3/Fe2O3,Al2O3+LOI,IOL,and SiO2+Fe2O3indicate that the studied bauxite horizon was likely deposited by different(acidic and/or alkalic)solutions at different stages.The lower part of the studied horizon with a thickness of^4.7 m displays alkali characteristics whereas the upper parts of the horizon with a thickness of^5.3 m are characterized by more acidic conditions.These results are fully supported by the co-occurrence of convex-concave tetrad effect curves in the chondrite-normalized REE patterns.Therefore,the tetrad effect phenomenon used in this study has proved to be a good and reliable geochemical proxy to assess the conditions of the depositional environment in the Shahindezh bauxite ores.
文摘Landscape distribution, macroscopic, microscopic, mineral and geochemical characterizations were conducted on the Doumbouo-Fokoué bauxite ore deposit in order to estimate bauxites potential and its implication to general lowering of the relief. Fourteen bauxitic plateaus covering a surface area of 5.7 km2 were identified. Bauxitic pedons show deep weathered profiles (10.0 - 12.0 m) with thick bauxitic mantle (4.0 - 8.0 m). Saprolite and pisolith bauxitic facies own high aluminium (47.5% - 49.5% Al2O3), relatively low iron (20.0% - 22.0% Fe2O3) and low silica contents (1.8% - 7.6% SiO2). Gibbsite is the dominant mineral (49% - 68% of minerals detected by X-ray);meanwhile hematite, goethite and kaolinite occur in small amounts. Bauxitization corresponds to intense allitization with abundant accumulation of gibbsite and development of lateritic iron bearing ortho-bauxites. Bauxite ores yielded bauxite reserves of 9.2 million tons. They occur as old and residual bauxitic mantles representing remnants of the Miocene residual lateritic deposits in West Cameroon referring to the African surface of Valeton [1]. Its mean altitude (1532 - 1590 m als) below the African surface reveals general lowering of the relief.
文摘The Sangarédi bauxite deposit in the Republic of Guinea contains several bauxite types depending on their litho-genetics. For rational and sustainable exploitation, determining the physical and mechanical properties of these different bauxite types is essential for mining companies. This paper presents a model for the physico-mechanical characterization of Sangarédi bauxites according to their litho-genetic type. Eight pits were drilled, and samples were collected from different layers at different depth intervals for each bauxite type. Physical and mechanical characterization tests were then carried out on 27 samples to determine the following parameters: water of absorption (%), compressive strength (kgf/cm2) and dynamic tensile strength (kgf/cm2). The effect of depth of sampling on these physico-mechanical parameters was evaluated. An average value of the parameters was made for each bauxite type. The results showed that the physico-mechanical characteristics of bauxites depend on the depth of sample collection, and the average value of the parameters constitutes the representative values of the bauxite type. Finally, a comparative study of the average value of the physico-mechanical parameters of the different bauxite types was carried out.
基金finically supported by the Natural Science Foundation of China(Nos.U1812420,42063004)the Geological Foundation of Guizhou Bureau of Geology and the Mineral Exploration and Development(No.2015-03)。
文摘A succession of Permian bauxite deposits are concentrated in Wuchuan,Zheng’an and Daozhen counties of northern Guizhou,South China.These deposits overlie contrast bedrocks,which are discriminated from the other bauxites of karst type in South China.Horizons of these bauxites are typified by sandwiched constructure,the upper and the lower layers of bauxitic claystone interbedded by the ore layer,and by abundant pyrite occurring in the ore and the lower layers.A geochemical study was carried out on samples from two boreholes of bauxitic profiles with claystone and carbonate bedrocks,respectively.It shows that the diverse profiles illustrate contrast mobility of elements.The profile overlying clayey bedrock is depleted in most elements including REE but variously enriched in HFSE,Pb,Mo,and half mass of Al2O3was leached out;the profile overlying carbonatic bedrock is highly enriched in REE and moderately in HFSE and Pb,its Al2O3mass was basically preserved.Both horizons are extremely enriched in alkali of Li and variously in Ce.A new genetic model is suggested accordingly.Tropic climate,coastal plain and frequent transgression and regression during the Permian caused a transition of weathering profiles from laterization to bauxitization in northern Guizhou.Massive pyrite in the horizons formed under reducing environment during the transgression through combining of iron enriched in the laterite profile and sulfur from the soaking and penetrating seawater;during the regression,oxidation of pyrite caused strong acid medium and induced the bauxitization.
基金Supported by the PetroChina Science and Technology Innovation Fund Project(2021DQ02-1003)Basic Research Project for Central Universities(2022JCCXDC02).
文摘Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems.
基金the National Natural Science Foundation of China(Nos.42177391,42077379)the Natural Science Foundation of Hunan Province,China(No.2022JJ20060)+1 种基金the Central South University Innovation-driven Research Program,China(No.2023CXQD065)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2023ZZTS0800).
文摘The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and microtopography.The results showed a significant decrease in Na_(2)O content(>30 wt.%)of FGD gypsum-treated bauxite residue after 30 min of mechanical ball milling.Mechanical ball milling resulted in differentiation of the elemental distribution,modification of the minerals in crystalline structure,and promotion in the dissolution of alkaline minerals,thus enhancing the acid neutralization capacity of bauxite residue.5 wt.%FGD gypsum combined with 30 min mechanical ball milling was optimal for the dealkalization of bauxite residue.
基金supported by the National Natural Science Foundation of China(No.42307521)the China Postdoctoral Science Foundation(No.2023M742934)。
文摘A novel integrated approach to remove the free alkalis and stabilize solid-phase alkalinity by controlling the release of Ca from desulfurization gypsum was developed.The combination of recycled FeCl_(3)solution and EDTA activated desulfurization gypsum lowered the bauxite residue pH to 7.20.Moreover,it also improved the residual Ca state,with its contribution to the total exchangeable cations increased(68%-92%).Notably,the slow release of exchangeable Ca introduced through modified desulfurization gypsum induced a phase transition of the alkaline minerals.This treatment stabilized the dealkalization effect of bauxite residue via reducing its overall acid neutralization capacity in abating pH rebound.Hence,this approach can provide guidance for effectively utilizing desulfurization gypsum to achieve stable regulation of alkalinity in bauxite residue.
文摘This study was focused to assess major and trace elements in bauxitic duricrusts from Ngaoundal and its surroundings in order to establish their mining interest. To this end, fieldworks, mineralogical and geochemical analyses were carried out. Four facies of duricrust were identified and characterized from the summit to the top of the slope of the Ngaoundal mountain: scoriaceous, pisolitic, nodular and massive. Mineralogical and geochemical analyses performed on 16 samples, revealed a significant concentration of Al<sub>2</sub>O<sub>3</sub> mainly in the scoriaceous facies (over 45% in grade), moderate in Fe<sub>2</sub>O<sub>3</sub> (averaging 23.69%) and SiO<sub>2</sub> (averaging 21.7%). Trace elements were generally low, excluding Cr (421 ppm on average), Zr (327 ppm on average and V (213 ppm on average). In addition, the limited quantities of alkalis (Na<sub>2</sub>O, K<sub>2</sub>O) and alkaline earths metals (MgO, CaO) coupled with the very high values of Chemical Index of Alteration (CIA) and Mineralogical Index of Alteration (MIA), (more than 99%) attest to the intense weathering of the studied materials. Allitization and monosiallitization constituted the crystallochemical phenomena that have led to the development of bauxitic minerals. More than 90% of gibbsite in scoriaceous facies, 52.21% - 76.01% of kaolinite in pisolitic facies and more than 40% of hematite in nodular facies were quantified. The relationships between the constitutive components indicated their interdependency during the bauxitization phenomenon. The mineralogical and geochemical properties highlighted the mining interest of the studied duricrusts to be valorized.
文摘The chemical and mineralogical composition of bauxite deposits is a key factor in the profitability of refining processes. The study of bauxites from the Saföfö site has assessed variations in chemical and mineralogical composition under various conditions, as well as the optimum conditions for their exploitation. The methodologies used in this study include experimental methods for determining moisture content, chemical composition, mineralogical composition, and specific density of bauxite. The results show significant variation in moisture content among the bauxite samples, with values ranging from 2.90% to 17.80%. The silica percentages in the samples range from 1.69% to 8.14%, while alumina percentages vary from 36.81% to 54.03%. After calcination, alumina oxide percentages range from 40% to 75%. After chemical activation, alumina oxides Al2O3 range from 40% to over 50%. Gibbsite is the most abundant mineral, accounting for about 60% - 70% of the total composition of the bauxite samples. Samples A to F have bulk densities varying between approximately 3.6 and 3.9. Sample B has the highest density, around 3.9, while sample C has the lowest, at around 3.5. Bauxite mining at the Saföfö site offers significant potential for the alumina industry, provided appropriate processing methods are selected to maximize quality and profitability while minimizing environmental impact.
基金Project(51374239)supported by the National Natural Science Foundation of China
文摘Reaction behaviors of sulfur and iron compounds in sodium aluminate solutions were investigated. The results show that iron compounds can remarkably remove the S2 but cannot get rid of S2Oc2-, SO^2- and SO4^-2 in sodium aluminate solutions. The removal efficiency of S^2- using ferrous compound and ferric compound can reach 86.10% and 92.70% respectively when the iron compounds were added with a molar ratio of 2:1 compared with the sulfur in liquors at 100℃. Moreover, several same compounds are formed in those two desulfurization processes with ferrous or ferric compounds, including erdite, hematite, amorphous ferrous sulfide, polymerized sulfur-iron compounds and ferric sulfate. The major difference between these two processes is that the erdite generated from ferrous compounds at the initial reaction stage will convert to a sodium-free product FeS2 at the subsequent stage.
基金Project(51304085)supported by the National Natural Science Foundation of ChinaProject(GJJ12363)supported by the Education Department of Jiangxi Province,ChinaProject(20142BAB216021)supported by the Natural Science Foundation of Jiangxi Province,China
文摘The flotation of diaspore and three kinds of silicate minerals, including kaolinite, illite and pyrophyllite, using an organosilicon cationic surfactant (TAS101) as collector and starch as depressant was investigated. The results show that both diaspore and aluminosilicate minerals float readily with organosilicon cationic collector TAS101 at pH values of 4 to 10. Starch has a strong depression effect for diaspore in the alkaline pH region but has little influence on the flotation of aluminosilicate minerals. It is possible to separate diaspore from aluminosilicate minerals using the organosilicon cationic collector and starch depressant. Further studies of bauxite ore flotation were also conducted, and the reverse flotation separation process was adopted. The concentrates with the mass ratio of Al2O3 to SiO2 of 9.58 and Al2O3 recovery of 83.34% are obtained from natural bauxite ore with the mass ratio of Al2O3 to SiO2 of 6.1 at pH value of 11 using the organosilicon cationic collector and starch depressant.
基金Projects(50974035,51074047,51004033) supported by the National Natural Science Foundation of ChinaProject(2008BAB34B01) supported by the National Science and Technology Pillar Program of China during the Eleventh Five-Year Plan Period+1 种基金Project (N100302005) supported by the National Higher-education Institution General Research and Development Funding,ChinaProject (2010AA03A405) supported by the Hi-tech Research and Development Program of China
文摘For the low-grade gibbsitic bauxite,the leaching rate of alumina is very low during the Bayer process.The acid leaching method is attracting more attention,and the hydrochloric acid leaching was developed rapidly.The mineral composition and chemical composition were investigated by X-ray diffraction analysis and semi-quantitative analysis.The thermodynamics of leaching process was analyzed.The results show that the major minerals in the bauxite are gibbsite,secondly goethite and quartz,anatase and so on.The acid leaching reactions of the bauxite would be thermodynamically easy and completed.Under the conditions that ore granularity is less than-55 μm,the L/S ratio is 100:7,and the leaching temperature is 373-383 K,the leaching time is 120 min and the concentration of HCl is 10%,both the leaching rates of Al and Fe are over 95%.The main composition of leaching slag is SiO2 which is easy for comprehensive utilization.
基金Project(20971041) supported by the National Natural Science Foundation of ChinaProject(09B032) supported by Scientific Research Fund of Hunan Provincial Education Department,China
文摘The sulfur phase in high sulfur-containing bauxite was studied by an X-ray diffraction analysis and a chemistry quantitative analysis.The methods for the removal of different shaped sulfur were also discussed.The results show that sulfur phases in high sulfur-containing bauxites exist in the main form of sulfide sulfur (pyrite) or sulfate sulfur,and the main sulfur forms of bauxites from different regions are not the same.Through a combination of an X-ray diffraction analysis and a chemistry quantitative analysis,the sulfur phases of high sulfur-containing bauxite could be accurately investigated.Deciding the main sulfur form of high sulfur-containing bauxite could provide theoretical instruction for choosing methods for the removal of sulfur from bauxite,and an oxidizing-roasting process is an effective way to remove sulfide sulfur from high sulfur-containing bauxite,the content of S^2-in crude ore in the digestion liquor is above 1.7 g/L,but in the roasted ore digestion liquor,it is below 0.18 g/L.Using the sodium carbonate solution washing technology to wash bauxite can effectively remove sulfate sulfur,the content of the total sulfur in ore is lowered to below 0.2% and can meet the production requirements for the sulfur content.
基金Project(11472311)supported by the National Natural Science Foundation of ChinaProject(2015CX005)supported by the Innovation Driven Plan of Central South University of ChinaProject(2015zzts083)supported by the Fundamental Research Funds for the Central Universities of Central South University,China
文摘Acoupled biharmonic spline and linear interpolation algorithm was proposed to create a three-dimensional smooth deposit model with minimal curvature containing grade and position data. To obtain the optimal technical parameters, such as cuttingheight and drum diameter, a virtual longwall mining procedure was modelled by simulating the actual fully mechanized longwall mining process. Based on the above work, a bauxite deposit in a longwall mining panel was modelled by scattered grade data from ores sampled on the entry wall. The deposit was then demarcated by industrial indexes and sliced according to the virtual longwallmining procedure. The results show that the proposed interpolation algorithm can depict the stratiform structure of bauxite depositsand that the uncovered bauxite deposit has high proportions of high-grade and rich ore. The ranges of optimal cutting height and drum diameters are 1.72-2.84 m and 1.42-1.72 m, respectively. Finally, an intellectualized longwall mining procedure was designed to guide the mining process with the lowest dilution and loss rates.
基金Project (2005CB623701) supported by the National Basic Research Program of China
文摘The effect of electrolyte on settling behavior of kaolinite was studied. Effects of hard water on selective flocculation of diasporic bauxite was tested and the measures were taken to eliminate the effects of Ca2+ and Mg2+ in hard water. The results indicated that, not only the concentration of electrolyte ions but also the ionic valence of the electrolyte ions affects the settling behavior of kaolinite; hard water significantly affects its selective flocculation owing to Ca2+ and Mg2+; general dispersants could not eliminate the effects of Ca2+ and Mg2+. Self-made softening agent in our lab could weaken or eliminate the effects of hard water on flocculation processes. The results of molecular dynamics simulation show that softening agent molecules could restrict Ca2+ and prevent them from playing their roles, so as to eliminate the effects. The continuous pilot experiment results of bauxite flocculation were even better than those obtained in laboratory.
基金Projects(51004090,51474198)supported by the National Natural Science Foundation of ChinaProject(KF13-03)supported by State Key Laboratory of Advanced Metallurgy University of Science and Technology BeijingProject(2015036)supported by Youth Innovation Promotion Association,Chinese Academy of Sciences
文摘To lower the cost of bauxite electrolysis desulfurization using NaOH solution as the supporting electrolyte, effects of electrolyte recycling on bauxite electrolysis desulfurization were investigated. The results indicate that electrode corrosion, cell voltage, the desulfurization rate and the pH value of the electrolyte have no obvious changes with the increase of cycle times. Additionally, there were some transitive valence S-containing ions in electrolyte after the electrolysis, such as SO3^2-,S2O3^2- . However, most of the sulfur in bauxite was eventually oxidized into SO4^2- into the electrolyte, and these S-containing ions did not affect the recycling utilization for electrolyte.
基金Projects(41877551,41842020)supported by the National Natural Science Foundation of ChinaProject(201509048)supported by the Environmental Protection’s Special Scientific Research for Chinese Public Welfare Industry
文摘Bauxite residue is a highly alkaline material generated from the production of alumina in which bauxite is dissolved in caustic soda.Approximately 4.4 billion tons of bauxite residues are either stockpiled or landfilled,creating environmental risks either from the generation of dust or migration of filtrates.High alkalinity is the critical factor restricting complete utilization of bauxite residues,whilst the application of alkaline regulation agents is costly and difficult to apply widely.For now,current industrial wastes,such as waste acid,ammonia nitrogen wastewater,waste gypsum and biomass,have become major problems restricting the development of the social economy.Regulation of bauxite residues alkalinity by industrial waste was proposed to achieve‘waste control by waste’with good economic and ecological benefits.This review will focus on the origin and transformation of alkalinity in bauxite residues using typical industrial waste.It will propose key research directions with an emphasis on alkaline regulation by industrial waste,whilst also providing a scientific reference point for their potential use as amendments to enhance soil formation and establish vegetation on bauxite residue disposal areas(BRDAs)following large-scale disposal.
基金Projects(41877511,41842020)supported by the National Natural Science Foundation of China
文摘Aiming at alkaline problem of bauxite residue,this work focused variation of alkaline characteristics in bauxite residue through phosphogypsum treatment.The results demonstrated that the pH of bauxite residue reduced from initial 10.83 to 8.70 when 1.50 wt%phosphogypsum was added for 91 d.The removal rates of free alkali and exchangeable sodium were 97.94%and 75.87%,respectively.Meanwhile,significant positive correlations(P<0.05)existed between pH and free alkali,exchangeable sodium.The effect of free alkali composition was CO3^2–>OH^–>AlO2^–>HCO3^–.In addition,alkaline phase decreased from 52.81%to 48.58%and gypsum stably presented in bauxite residue which continuously provided Ca^2+to inhibit dissolution of combined alkali.Furthermore,phosphogypsum promoted formation of macroaggregate structure,increased Ca^2+,decreased Na+and Al^3+on the surface of bauxite residue significantly,ultimately promoting soil formation in bauxite residue.
基金Projects(41701587,41877511)supported by the National Natural Science Foundation of China
文摘Bauxite residue is an alkaline waste material in the process of alumina production due to its characteristics of higher salinity and alkalinity,which results in environmental issues and extremely restricts the sustainable development of alumina industries.In this work,we conduct a column experiment to study the effects of two amendments on aggregate stability and variations in alkaline minerals of bauxite residue.The two amendments are phosphogypsum(PG)and phosphogypsum and vermicompost(PVC).The dominant fraction in aggregate is 1–0.25 mm in diameter on the surface,which takes up 39.34%,39.38%,and 44.51%for CK,PG,and PVC,respectively.Additions of PG and PVC decreased pH,EC,ESP,exchangeable Na^+concentration and the percentage of alkaline minerals,and then increased exchangeable Ca^2+concentration in bauxite residue.There was significant positive correlation between pH and exchangeable Na^+concentration,the percentage of cancrinite,tricalcium aluminate and calcite;while negative correlation was found in pH value versus exchangeable Ca^2+concentration.Theses findings confirmed that additions of phosphogypsum and vermicompost have a stimulative effect on aggregate stability in bauxite residue.In particular,amendment neutralization(phosphogypsum+vermicompost)in column represents an advantage for large-scale simulation of vegetation rehabilitate in bauxite residue disposal areas.