用Ba(OH)2·8H2O和Sr(OH)2·8H2O配制电解液,工艺参数分别设置为电流密度20 A/dm2、电流频率100Hz、反应时间20 min及占空比85%,采用微弧氧化法在工业纯Ti板(99.5%)表面原位生长Ba x Sr(1-x)TiO3薄膜。分析了相同Ba2+/Sr2+比条...用Ba(OH)2·8H2O和Sr(OH)2·8H2O配制电解液,工艺参数分别设置为电流密度20 A/dm2、电流频率100Hz、反应时间20 min及占空比85%,采用微弧氧化法在工业纯Ti板(99.5%)表面原位生长Ba x Sr(1-x)TiO3薄膜。分析了相同Ba2+/Sr2+比条件下,电解液浓度对薄膜物相、表面形貌及薄膜厚度的影响。结果表明:所得薄膜均主要由四方相Ba0.5Sr0.5TiO3构成;Ba2+和Sr2+各为0.2 mol/L时所得薄膜的表面平整度及致密性最好,表面粗糙度值最小,并检测了该薄膜在不同频率下的介电常数和介电损耗,发现两者均随频率的增加而减小;薄膜厚度随电解液浓度的增加而增加。展开更多
CaxBa1-xTiO3 (CBT) fine particles doped with red luminescence center of Pr3+ ions (Pr: CBT) were successfully synthesized by salt assisted spray pyrolysis (SASP) process. Scanning electronic microscope (SEM)...CaxBa1-xTiO3 (CBT) fine particles doped with red luminescence center of Pr3+ ions (Pr: CBT) were successfully synthesized by salt assisted spray pyrolysis (SASP) process. Scanning electronic microscope (SEM) and laser scattering analysis demonstrate that salt can be removed from the surface of particles by washing with Milli-Q water and the particles can be further separated by ball-milling to get well-dispersed Pr^3+ ions doped CBT fine particles. The luminescence properties, such as photoluminescence (PL) and mechanoluminescence (ML), of as-synthesized Pr: CBT particles were investigated. For Pr: CBT fine particles with different Ca molar ratios, all the samples show one emission at 612 nm, with increasing Ca molar ratio, PL intensity of Pr: CBT fine particles become stronger and stronger. When pressure was loaded on the Pr: CBT pellet, mechanoluminescence(ML) emission was measured. The results show that the ML intensity is proportional to the applied pressure.展开更多
基金Funded partly by the Industrial Technology Research Grant Programin ’03 from New Energy and Industrial Technology Development Organization(NEDO) of Japan
文摘CaxBa1-xTiO3 (CBT) fine particles doped with red luminescence center of Pr3+ ions (Pr: CBT) were successfully synthesized by salt assisted spray pyrolysis (SASP) process. Scanning electronic microscope (SEM) and laser scattering analysis demonstrate that salt can be removed from the surface of particles by washing with Milli-Q water and the particles can be further separated by ball-milling to get well-dispersed Pr^3+ ions doped CBT fine particles. The luminescence properties, such as photoluminescence (PL) and mechanoluminescence (ML), of as-synthesized Pr: CBT particles were investigated. For Pr: CBT fine particles with different Ca molar ratios, all the samples show one emission at 612 nm, with increasing Ca molar ratio, PL intensity of Pr: CBT fine particles become stronger and stronger. When pressure was loaded on the Pr: CBT pellet, mechanoluminescence(ML) emission was measured. The results show that the ML intensity is proportional to the applied pressure.